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Inference at a single voxel

 = p(T > u | H0)

NULL hypothesis
H0: activation is zero

We can choose u to set a voxel-wise 

significance level of .

p-value: probability of getting a value of the 
test statistic t , or a more extreme value, 
under the null hypothesis. 

If the p-value is smaller than u, we reject 
the null hypothesis.
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Reject H0

Failure to 

reject H0

H0 true H0 false

True negative

(TN)

True positive

(TP)

False positive (FP)

Type I error 

False negative (FN)

Type II error β

specificity: 1-

= TN / (TN + FP)

= proportion of actual 

negatives which are 

correctly identified

sensitivity (power): 1-

= TP / (TP + FN)

= proportion of actual 

positives which are 

correctly identified



Assessing SPMs

t > 0.5t > 3.5t > 5.5

High Threshold Med. Threshold Low Threshold

Good Specificity

Poor Power

(risk of false negatives)

Poor Specificity

(risk of false positives)

Good Power



Inference on images

Signal

Signal+Noise

Noise



11.3% 11.3% 12.5% 10.8% 11.5% 10.0% 10.7% 11.2% 10.2% 9.5%

Use of ‘uncorrected’ p-value, =0.1

Percentage of Null Pixels that are False Positives

Using an ‘uncorrected’ p-value of 0.1 will lead us to conclude on 
average that 10% of voxels are active when they are not.

This is clearly undesirable. To correct for this we can define a null
hypothesis for images of statistics.



Family-wise null hypothesis

FAMILY-WISE NULL HYPOTHESIS:
Activation is zero everywhere.

If we reject a voxel null hypothesis at any voxel, we reject the 
family-wise null hypothesis 

A false-positive anywhere in the image gives a Family Wise Error 
(FWE).

Family-Wise Error (FWE) rate = ‘corrected’ p-value



Use of ‘uncorrected’ p-value, =0.1

FWE

Use of ‘corrected’ p-value, =0.1



The Bonferroni correction

The family-wise error rate (FWE), , for a family of N independent

voxels is

α = Nv

where v is the voxel-wise error rate. 

Therefore, to ensure a particular FWE, we can use

v = α / N

BUT ...



Independent voxels Spatially correlated voxels

Bonferroni correction assumes independence of voxels
 this is too conservative for brain images, 

which always have a degree of smoothness

The Bonferroni correction



Smoothness (inverse roughness)

• roughness = 1/smoothness

• intrinsic smoothness
– MRI signals are aquired in k-space (Fourier space); after projection on anatomical

space, signals have continuous support

– diffusion of vasodilatory molecules has extended spatial support

• extrinsic smoothness
– resampling during preprocessing

– matched filter theorem
 deliberate additional smoothing to increase SNR

• described in resolution elements: "resels"

• resel = size of image part that corresponds to the FWHM (full width half 
maximum) of the Gaussian convolution kernel that would have produced the
observed image if it had been applied to independent voxel values

• # resels is similar, but not identical to # independent observations

• can be computed from spatial derivatives of the residuals



Random Field Theory

• Consider a statistic image as a discretisation of a continuous underlying 
random field with a certain smoothness

• Use results from continuous random field theory

Discretisation
(“lattice 

approximation”)



Euler characteristic (EC)

Topological measure

threshold an image at u

→ EC # blobs 

At high u:

p (blob) = E [EC],

therefore (under H0):

FWE rate:  = E [EC]



Euler characteristic (EC) for 2D images

  )5.0exp()2)(2log4(ECE 22/3

TT ZZR  

R = number of resels

ZT = Z value threshold

We can determine that Z threshold for which

E[EC] = 0.05.  At this threshold, every

remaining peak represents a significant

activation, corrected for multiple 

comparisons across the search volume.

Example: For 100 resels, E [EC] = 0.049 for 

a Z threshold of 3.8. That is, the probability 

of getting one or more blobs where Z is 

greater than 3.8, is 0.049.

Expected EC values for an image 

of 100 resels



Euler characteristic (EC) for any image

• Computation of E[EC] can be generalized to
volumes of any dimension, shape and size
(Worsley et al. 1996).

• When we have an a priori hypothesis about where
an activation should be, we can (and should) 
reduce the search volume:

– mask defined by (probabilistic) anatomical
atlases

– mask defined by separate "functional localisers"

– mask defined by orthogonal contrasts

– (spherical) search volume around previously
reported coordinates

small volume correction (SVC)

Worsley et al. 1996. A 

unified statistical approach 

for determining significant 

signals in images of cerebral 

activation. Human Brain 

Mapping, 4, 58–83.



Computing EC wrt. search volume and threshold

E(u)  ()  ||1/2 (u 2 -1) exp(-u 2/2) / (2)2

–   Search region   R3 

– (  volume

– ||1/2  roughness

• Assumptions:

– Multivariate normal

– Stationary*

– ACF twice differentiable at 0

* Stationarity

– Results valid w/out stationarity

– More accurate when stationarity holds



Height level test:
intensity of a voxel

Cluster level test:
spatial extent above u

Set level test:
number of clusters 
above u

Sensitivity



Regional 
specificity



Height, cluster and set level tests



False Discovery Rate (FDR)

• Familywise Error Rate (FWE)

– probability of one or more false positive voxels in the entire image

• False Discovery Rate (FDR)

– FDR = E[V/R]  

(R voxels declared active, V falsely so)

– FDR = proportion of activated voxels that are false positives



False Discovery Rate - Illustration

Signal

Signal+Noise

Noise



FWE

6.7% 10.4% 14.9% 9.3% 16.2% 13.8% 14.0% 10.5% 12.2% 8.7%

Control of Familywise Error Rate at 10%

11.3% 11.3% 12.5% 10.8% 11.5% 10.0% 10.7% 11.2% 10.2% 9.5%

Control of Per Comparison Rate at 10%

Percentage of False Positives

Control of False Discovery Rate at 10%

Occurrence of Familywise Error

Percentage of Activated Voxels that are False Positives



Benjamini & Hochberg procedure

• Select desired limit q on FDR

• Order p-values, p(1)  p(2)  ...  p(V)

• Let r be largest i such that

• Reject all null hypotheses 
corresponding to
p(1), ... , p(r).

p(i)  (i/V)  q

p(i)

i/V

(i/V)  qp
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e
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0
1

Benjamini & Hochberg, JRSS-B

(1995) 57:289-300

i/V = proportion of all selected voxels



Real Data: FWE correction with RFT

• Threshold
– S = 110,776

– 2  2  2 voxels
5.1  5.8  6.9 mm
FWHM

– u = 9.870

• Result
– 5 voxels above

the threshold
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• Threshold
– u = 3.83

• Result
– 3,073 voxels above

threshold

Real Data: FWE correction with FDR



Caveats concerning FDR

• questionable whether voxel-wise FDR implementations are 
suitable for neuroimaging data

• Chumbley & Friston 2009 argue that:

– the fMRI signal is spatially extended, it does not have compact support 

– inference should therefore not be about single voxels, but about 
topological features of the signal (e.g. peaks or clusters)



Chumbley & Friston 2009: example of FDR failure

• “Imagine that we declare 100 voxels significant using an FDR 
criterion. 95 of these voxels constitute a single region that is truly 
active. The remaining five voxels are false discoveries and are 
dispersed randomly over the search space. 

In this example, the false discovery rate of voxels conforms to its 
expectation of 5%. However, the false discovery rate in terms of 
regional activations is over 80%. This is because we have 
discovered six activations but only one is a true activation.”

(Chumbley & Friston 2009, NeuroImage)



Chumbley & Friston 2009: example of FDR failure

• simulated data with intrinsic smoothness: 8 images with true signal in centre 

and background noise

• one-sample t-test, FDR-threshold at voxel-level (q=0.05)

• result: both voxel- and cluster-wise FDR bigger than expected (due to 

smoothness)



Chumbley & Friston 2010: Topological FDR

• instead of p-values of 

individual voxels, apply 

FDR to p-values of 

topological features of the 

signal (peaks or clusters)

• simulations: peak-FDR is 

more sensitive than peak-

FWE

• empirical analysis: number 

of sign. peaks increases 

monotonically: peak-FWE, 

peak-FDR, cluster-FDR, 

voxel-FDR

peak-FWE peak-FDR

cluster-FDR voxel-FDR



Conclusions

• Corrections for multiple testing are necessary to control the false positive 
risk.

• FWE

– Very specific, not so sensitive

– Random Field Theory

• Inference about topological features (peaks, clusters)

• Excellent for large sample sizes (e.g. single-subject analyses or large 
group analyses)

• Afford littles power for group studies with small sample size  consider 
non-parametric methods (not discussed in this talk)

• FDR

– Less specific, more sensitive

– Interpret with care!

• represents false positive risk over whole set of selected voxels

• voxel-wise FDR may be problematic (ongoing discussion)

• topological FDR now available in SPM
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