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Overview

1. Advantages of er-fMRI

2. BOLD impulse response
3. General Linear Model

4. Temporal basis functions
5. Timing issues

6. Design optimisation



Advantages of er—-fMRI

1. Randomised trial order
cf. confounds of blocked designs



er—fMRI: Stimulus randomisation

Blocked designs may trigger expectations and cognitive sets
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Advantages of er—-fMRI

1. Randomised trial order
cf. confounds of blocked designs

2. Post hoc classification of trials:
according to performance, or because some events
can only be indicated by the subject (e.g. spontaneous
perceptual changes)



er—fMRI: “on-line” event—definition

Bistable percepts

Binocular rivalry




Advantages of er—-fMRI

1. Randomised trial order
cf. confounds of blocked designs

2. Post hoc classification of trials:
according to performance, or because some events can
only be indicated by the subject (e.g. spontaneous
perceptual changes)

3. Some trials cannot be blocked
e.g. “oddball” designs



er—fMRI: “

Frequency of tone
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oddball” designs

Switch to a deviant frequency
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Visual oddball paradigm




Advantages of er—-fMRI

1. Randomised trial order
cf. confounds of blocked designs

2. Post hoc classification of trials:
according to performance, or because some events can
only be indicated by the subject (e.g. spontaneous
perceptual changes)

3. Some trials cannot be blocked
e.g. “oddball” designs

4. More accurate models even for blocked designs?



er—fMRI: “event—based” model of block—designs

“Epoch” model assumes constant neural processes throughout block
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Modeling block designs: epochs vs events

» Models for ER designs are based on
events (delta functions)... _
Sustained epoch

- ... but models for blocked designs can “Classic”

be epoch- or event-related foxi,af
unction

Near-identical regressors can be —
created by 1) sustained epochs, 2)
rapid series of events (SOAs<~3s) Series of events
In SPM, all conditions are specified in Delta
terms of their 1) onsets and 2) durations HHHHHH HHHHHH functions

epochs: variable or constant duration,
unit amplitude l,

events: zero duration, amplitude: 1/dt Convolved
/\I_I/\M ivec



Disadvantages of er—-fMRI

1. Less efficient for detecting effects than blocked designs
(discussed in detall later).

2. Some psychological processes may be better blocked (e.qg.
task-switching, attentional instructions).



BOLD impulse response

Function of blood volume and
deoxyhemoglobin content (Buxton
et al. 1998)

Peak (max. oxygenation) 4-6s
post-stimulus; return to baseline
after 20-30s

initial undershoot sometimes
observed (Malonek & Grinvald,
1990)

Similar across V1, A1, S1...

... but differences across other
regions (Schacter et al. 1997) and
individuals (Aguirre et al. 1998)
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BOLD impulse response

 Early er-fMRI studies used a long
Stimulus Onset Asynchrony
(SOA) to allow BOLD response to

return to baseline.

<€—— Peak

 However, if the BOLD response is ,
explicitly modelled, overlap Stizflzs
between successive responses at Undershoot
short SOAs can be
accommodated...

* ... particularly if responses are 0 J

assumed to superpose linearly. <_Unldnel;[;iloot

« Short SOAs can give a more 0 5 10 15 20 psT (S)
efficient design (see below).




Reminder: BOLD response as output from LTI

0.8} hemodynamic -
oe} response .
£ function (HRF).
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time [s]

f®g)= [ f(r)gt-r)ds

The response of a linear time—invariant (LTI) system is the convolution of the input with
the system’s response to an impulse (delta function).

expected BOLD response
= input function @ impulse response function (HRF)



General Linear (Convolution) Model

For block designs, the exact shape of
the convolution kernel (i.e. HRF) does
not matter much.

For event-related designs this
becomes much more important.

Usually, we use more than a single
basis function to model the HRF.

GLM for a single voxel:

y(®) =[u(t) ® h(7)Ip + e(t)

Omitting time index:
y =XB+e

u(t)

h(9)=2 3 J; (D)
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Convolution with BOLD 1




Convolution with BOLD 2




Convolution with BOLD 3




Convolution with BOLD 4




Nonlinearities at short SOAs

effect of a prior stimulus
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Temporal basis functions

Finite Impulse Response (FIR) model
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Informed basis set

« Canonical HRF:
* linear combination of 2 gamma
Canonical functions
« 7 parameters, see spm_hrf

Temporal

: : * plus multivariate Taylor expansion in:
Dispersion _ o
« time (Temporal Derivative)

« width (Dispersion Derivative; partial

derivative of canonical HRF wrt.
parameter controlling the width)
» F-tests: testing for responses of any shape.
0 5 10 15 50 PST (s) * T-tests on canonical HRF alone (at 1 level)

can be improved by derivatives reducing

residual error, and can be interpreted as

“amplitude” differences, assuming canonical
Friston et al. 1998, Neurolmage HRF is a reasonable fit.



Matlab demo — time and dispersion derivatives



Temporal basis sets: Which one?

In this example (rapid motor response to faces, Henson et al, 2007)...
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Canonical + Temporal + Dispersion + FIR

canonical + temporal + dispersion derivatives appear sufficient
may not be for more complex trials (e.g. stimulus-delay-response)

but then such trials better modelled with separate neural components
(i.e. activity no longer delta function) (Zarahn, 1999)




Timing Issues : Practical

Scans IR :_4,S

e T T Lo T Do
« Sampling at [0,4,8,12...] post- stimulus | | | |

e Assume TR is 4s

may miss peak signal

P n
< >

Stimulus (synchronous)

‘Saml‘oling i‘ate:zis

SOA = Stimulus onset asynchrony

(= time between onsets of two subsequent stimuli) 0 51012 psT(g)



Timing Issues

Assume TR is 4s

Sampling at [0,4,8,12...] post- stimulus
may miss peak signal

Higher effective sampling by:
— 1. Asynchrony, e.g. SOA = 1.5xTR

SOA = Stimulus onset asynchrony
(= time between onsets of two subsequent stimuli)

: Practical

Scans

TR=4s

—

L Lo Lo T B Lo

Stimulus (asynchronous)

—>

Sampling rate=2s




Timing Issues

Assume TR is 4s

Sampling at [0,4,8,12...] post- stimulus
may miss peak signal

Higher effective sampling by:
— 1. Asynchrony, e.g. SOA = 1.5xTR

— 2. Random jitter, e.g. SOA = (2
0.5)xTR

Better response characterisation
(Miezin et al, 2000)

SOA = Stimulus onset asynchrony
(= time between onsets of two subsequent stimuli)

: Practical

Scans

L Lo Lo T B Lo

TR=4s

—

—

Stimulus (random jitter)

1N

Sampling rate=2s




Slices

Slice—timing

Time [TRs]

Sladky et al. 2011, Neurolmage



Slice—timing

~ Top slice

 Slices acquired at different times,
yet model is the same for all slices

=> different results (using canonical
HRF) for different reference slices

TR=3s

« Solutions:

1. Temporal interpolation of data
... but may be problematic for longer
TRs

2. More general basis set (e.g. with
temporal derivatives)
... but more complicated design
matrix
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Henson et al. 1999



Design efficiency

How can | make my

experimental design
as good (powerful) as possible?




Design efficiency

The aim is to minimize the standard error of a t- T CT,B

contrast (i.e. the denominator of a t-statistic). - \/VM (cT ,5’)

var(c’ B) =6 " (X" X) ¢

This is equivalent to maximizing the efficiency e:

Noise variance Design variance

If we assume that the noise variance is independent of the specific

design:
e(c, X)=(C" (X" X))

This is a relative measure: all we can really say is that one design
is more efficient than another (for a given contrast).



Scaling issues —a x ¢
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Multiplying the contrast with a scalar
does not change the t-value?




Scaling issues — b x X

CTﬁb ¢ /éb
T;} —
\/ var(c’ 3,) \/ G bX ! bX

B, = (bXThX) 1bXTy = B/b
c ,B/b

b—l ’\2 T

Multiplying the design matrix with a scalar
does not change the t-value?

=T




Stimulus (“Neural”)

Time (s)

16 32 48 64 80

Fixed SOA = 16s

HRF
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Not particularly efficient...

Predicted Data

Time (s)
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Stimulus (“Neural”)

Time (s)

16

32

48

64

80

2

Fixed SOA = 4s

HRF
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. ~ Time(s)
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Very inefficient...

Predicted Data
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Randomised, SOA_. = 4s

Stimulus (“Neural”) HRF Predicted Data

2

0 0
\__/—'—_
. | Time (s) .  Time(s) | . \/ Time (s)
16 32 48 64 80 0 5 10 15 20 25 30 0 16 32 48 64 80

More efficient ...



Stimulus (“Neural”)

Time (s)

16

32

48

64

80

Blocked, SOA . = 4s

2

HRF
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Even more efficient...
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Another perspective on efficiency

Hemodynamic transfer
function

(based on canonical HRF):
neural activity (Hz) — BOLD

1.5

1
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efficiency = bandpassed signal energy

Josephs & Henson 1999, Phil Trans B



Fourier series

Sine wave
y(t) = Asin(27ft + @) = Asin(wt + @)
where:

o A =the amplitude, the peak deviation of the function from zero.

« f=the ordinary frequency, the number of oscillations (cycles) that occur each second of time.

o W =21, the angular frequency, the rate of change of the function argument in units of radians per second
» p =the phase, specifies (in radians) where in its cycle the oscillationis at = 0.

Power = squared amplitude (often represented in logs)

Signal energy = integral of power over time

Fourier series

= infinite sum of sines and ©0 o0
cosines of different frequencies S a°+;a“°5( ”fkf”;  SIN(27fi t)




Fourier series

Amplitude
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Fourier transform

simply speaking, the Fourier transform F provides the Fourier series
coefficients for a signal, i.e., it decomposes a function of time (a
signal) into the frequencies it consists of

linear operator

convolution in time domain = multiplication in frequency domain:
F(f"g) = F(f)F(9)

Animation: https://en.wikipedia.org/wiki/Fourier transform



Blocked, epoch = 20s

Stimulus (“Neural”) HRF Predicted Data
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Blocked-epoch (with short SOA)



Sinusoidal modulation, f = 1/33s

Stimulus (“Neural”) HRF

0

0 N———_

‘ . ‘ Time (s), , . Time (s)
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(0]
.g |
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Freq (Hz)
0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2

The most efficient design of all!
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Blocked (80s), SOA . =4s, highpass filter = 1/120s

- « " Predicted data
Stimulus (“Neural”) HRF (incl. HP filtering!)
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0 0
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0 32 64 9 128 160 0o 5
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Don’t use long (>60s) blocks!
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Randomised, SOA_. =4s, highpass filter = 1/120s

Stimulus (“Neural”) HRF Predicted Data

0 OJ
. | Time (s) | \_/m . | Time (s)
0 32 64 9% 128 160 0 5 10 15 20 25 30 0 32 64 9% 128 160

l l l

Magnitude
Magnitude

Freq (Hz)

)
Freq (Hz)

0.05 0.1 015 02

0 0.05 0.1 015 02

0.05 0.1 015 02

Randomised design spreads power over frequencies.



Design efficiency

fHH[HHHH

. 09 0]7: e(c,X) = 18.1
XTX = ( 0o 1 ) [0505] . e(c,X) = 19.0
e [1 —1]7: e(c,X) =95.2

“*BUUUUUUUL

[1-1] | [11]

U High correlation between regressors leads
to low sensitivity to each regressor alone.

U We can still estimate efficiently the
difference between them.




Efficiency: Multiple event types

Design parametrised by:
SOA,;, Minimum SOA

pi(h) Probability of event-type i
given history h of last m events

With n event-types p;(h) is a n" xn
Transition Matrix

Example: Randomised AB

A B
A 0.5 0.5
B 0.5 0.5
=> ABBBABAABABAAA...

Differential Effect (A-B)
% | + Common Effect (A+B)

8 )
+.
+ .
* g
2t o
fad
'++-+.

i 5§ 0 15 20 25 an
S0A

4s smoothing; 1/60s highpass
filtering



Efficiency: Multiple event types

Example: Null events
A B
A 0.33 0.33
B 0.33 0.33

=> AB-BAA--B---ABB...

Efficient for differential and main
effects at short SOA

Equivalent to stochastic SOA (null
event corresponds to a third
unmodelled event-type)

.+|

Null Events (A-B)

X
\

£l +.

2 e Null Events (A+B)

+,
"

oy

+.

+.
to4 -
'++-+.

ProsiT iasses

L/

0 5 0 15 20 25 a0
S0AM

4s smoothing; 1/60s highpass filtering



Efficiency — main conclusions

Optimal design for one contrast may not be optimal for another.

Generally, blocked designs with short SOAs are the most efficient
design.

With randomised designs, optimal SOA for differential effect (A-B) is
minimal SOA (assuming no saturation), whereas optimal SOA for
common effect (A+B) is 16-20s.

Inclusion of null events gives good efficiency for both common and
differential effects at short SOAs.



Appendix: Orthogonal regressors

What’s (not) the problem

if | use a design with
correlated regressors?




Orthogonal regressors

Variability described by X; Variability described by X,

Testing for X; Testing for X,
Variability in Y]




Correlated regressors

Variability described by X;

Shared variance

°x Aq paquosap Ajjigeriep

Variability in Y]




Correlated regressors

Variability described by X,

Testing for X,

¢x Aq paquosap Ajljigeriep

Variability in Y]




Correlated regressors

Variability described by X,

Testing for X

¢x Aq paquosap Ajljigeriep

Variability in Y]




Correlated regressors

Variability described by X,

Variability in Y]

'x Aq paquiosap Ajljiqeriep




Correlated regressors

Testing for X;

Variability described by X,
¢x Aq paquasap Ajljigeriep

Variability in Y]




Correlated regressors

Testing for X,

Variability described by X,
°x Aq paquosap Ajjiqeriep

Variability in Y]




Correlated regressors

Testing for X; and/or X,

Variability described by X,
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Design orthogonality

For each pair of columns of the design
matrix, the orthogonality matrix depicts
the magnitude of the cosine of the
angle between them, with the range O
to 1 mapped from white to black.

tlesign matrix

|

|
i
|‘II

i)

‘I

O If both vectors have zero mean then
the cosine of the angle between the
vectors is the same as the

design orhogonalty correlation between the two

variates.

Measure : zhz. value of cogine of angle hetween colurng of degign matrx
Scale - black - colinear [c:u:us=+1.l'—%]
uukite: - orthogoral (cos=0)
gray - kot orthogonal or colinear



Correlated regressors: summary
We implicitly test for an additional effect only. When testing for the first

regressor, we are effectively removing the part of the signal that can be
accounted for by the second regressor:

= implicit orthogona/isationx
X3

X4

1
Orthogonalisation = decorrelation.xﬂ’arameters and test on the non
modified regressor change.
Rarely solves the problem as it requires assumptions about which
regressor to uniquely attribute the common variance.
= change regressors (i.e. design) instead, e.g. factorial designs.
= use F—tests to assess overall significance.

Original regressors may not matter: it’ s the contrast you are testing
which should be as decorrelated as possible from the rest of the design
matrix



Thank you
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