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Bayes' rule

The Reverend Thomas Bayes

(1702-1761)
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“... the theorem expresses 

how a ... degree of belief 

should rationally change to 

account for availability of 

related evidence."

Wikipedia

Likelihood  prior: generative model

Model evidence: normalisation

term and index for model goodness

: parameters

y: data
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Bayesian inference: an animation

Code courtesy by Guillaume Flandin



But why should I learn about Bayesian inference?

Because Bayesian principles are fundamental for 

• statistical inference in general

• system identification

• translational neuromodeling ("computational assays")

– computational psychiatry

– computational neurology

– computational psychosomatics

• contemporary theories of brain function (the "Bayesian brain")

– predictive coding

– free energy principle

– active inference



Application to brain activity and 

behaviour of individual patients

Computational assays:

Models of disease mechanisms




Detecting physiological subgroups 

(based on inferred mechanisms)


Translational Neuromodeling

Individual treatment prediction

 disease mechanism A

 disease mechanism B

 disease mechanism C
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dx

f x u
dt

  

Stephan et al. 2015, Neuron



Generative models as "computational assays"
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y = data,  = parameters, m = model



SYMPTOM

(behaviour

or physiology)

HYPOTHETICAL

MECHANISM
...
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Differential diagnosis by model selection
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Stephan et al. 2017, NeuroImage



Perception = inversion of a hierarchical generative model

environm. states

others' mental states

bodily states

( | , )p x y m

( | , ) ( | )p y x m p x m
forward model

perception

neuronal states



Back to the technicalities...



Bayes' rule

The Reverend Thomas Bayes

(1702-1761)
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No change – just making 

the choice of a particular 

model m explicit.



Bayes' rule

The Reverend Thomas Bayes

(1702-1761)
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Evidence:
probability that data were 

generated by model m, 

averaging over all possible 

parameter values (as 

weighted by the prior).

posterior  = likelihood ∙ prior / evidence



The evidence term
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• "The probability of breast cancer is 1% for women aged forty who participate 

in routine screening. If a woman has breast cancer, the probability is 80% that 

she will get a positive mammogram. If a woman does not have breast cancer, 

the probability is 9.6% that she will also get a positive mammogram. A woman 

in this age group has a positive mammogram in a routine screening. What is 

the probability that she actually has breast cancer?" (Gigerenzer & Hoffrage 1995)

• From this information, we can deduce:

– p(C+) = 0.01   p(C-) = 0.99

– p(M+|C+) = 0.8

– p(M+|C-) = 0.096

• We can now apply Bayes' rule to compute the posterior probability:

Bayesian inference: A clinical example
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• "The probability of breast cancer is 1% for women aged forty who participate 

in routine screening. If a woman has breast cancer, the probability is 80% that 

she will get a positive mammogram. If a woman does not have breast cancer, 

the probability is 9.6% that she will also get a positive mammogram. A woman 

in this age group has a positive mammogram in a routine screening. What is 

the probability that she actually has breast cancer?" (Gigerenzer & Hoffrage 1995)

• From this information, we can deduce:

– p(C+) = 0.01   p(C-) = 0.99

– p(M+|C+) = 0.8

– p(M+|C-) = 0.096

• We can now apply Bayes' rule to compute the posterior probability:

Bayesian inference: A clinical example
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1. specify the joint probability over data (observations) and parameters

2. enforce mechanistic thinking: how could the data have been caused?

3. generate synthetic data (observations) by sampling from the prior – can 

model explain certain phenomena at all?

4. inference about parameters → p(|y)

5. model evidence p(y|m): index of model quality 

Generative models

( | , )p y m

( | , )p y m ( | )p m



 Observation of data

 Formulation of a generative model

 Model inversion – updating one's beliefs

( | ) ( | ) ( )p y p y p  

Model

likelihood function   p(y|)

prior distribution p()

Measurement data y

posterior

model evidence

Bayesian inference in practice



Priors
• Objective priors: 

– "non-informative" priors

– objective constraints (e.g., non-negativity)

• Subjective priors:

– subjective but not arbitrary

– can express beliefs that result from 

understanding of the problem or system

– can be result of previous empirical results

• Shrinkage priors:

– emphasize regularization and sparsity

• Empirical priors:

– learn parameters of prior distributions from 

the data ("empirical Bayes")

– rest on a hierarchical model 

Example of a shrinkage prior



A generative modelling framework for fMRI & EEG: 

Dynamic causal modeling (DCM)

Friston et al. 2003, NeuroImage

( , , )
dx

f x u
dt

  ),(xgy

Model inversion:

Inferring neuronal 

parameters

EEG, MEG fMRI

Forward model:

Predicting measured 

activity

dwMRI

Stephan et al. 2009, NeuroImage



Stephan et al. 2015, 

Neuron

DCM for 

fMRI
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Nonlinear Dynamic Causal Model for fMRI

Stephan et al. 2008, NeuroImage
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Invert model

Make inferences

Define likelihood model

Specify priors

Neural dynamics

Observer function

Design experimental inputs)(tu

Inference on model 

structure

Inference on parameters

Bayesian system 

identification 



Bayesian Inference

Approximate Inference

Variational 
Bayes

Sampling 
(MCMC)

Analytical solutions

Methods for Bayesian inference



How is the posterior computed = how is a generative 

model inverted?

• compute the posterior analytically

– requires conjugate priors

• variational Bayes (VB)

– often hard work to derive, but fast to compute

– uses approximations (approximate posteriors, mean field approx.)

– problems: local minima, potentially inaccurate approximations

• sampling methods (MCMC)

– theoretically guaranteed to be accurate (for infinite computation time)

– problems: may require very long run time in practice, only heuristics to 

decide about convergence in practice



Conjugate priors

• for a given likelihood function, the choice of prior determines the algebraic 

form of the posterior

• for some probability distributions a prior can be found such that the posterior 

has the same algebraic form as the prior

• such a prior is called “conjugate” to the likelihood

• examples:

– Normal  Normal × Normal

– Beta  Binomial × Beta

– Dirichlet  Multinomial × Dirichlet

( | ) ( | ) ( )p p pθ y y θ θ

same form



Likelihood & prior

Posterior 
(for a single observation y)

posterior mean = variance-weighted 

combination of prior mean and data

  y ε

t

y(t)

A simple example: univariate Gaussian belief update
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Slides on Gaussian belief updates adapted from Will Penny.

Prior

Likelihood

Posterior

prior

post





Likelihood & prior

Posterior 
(for a single observation y)

   1| ,post postp y N   

Same thing – but expressed as precision weighting
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relative precision weighting:
posterior mean = precision-weighted 

combination of prior mean and data

  y ε

t

y(t)

Prior

Likelihood
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



Variational Bayes (VB)

best proxy

𝑞 𝜃

true
posterior

𝑝 𝜃 𝑦

hypothesis
class

divergence

KL 𝑞||𝑝

Idea: find an approximate density 𝑞(𝜃) that is maximally similar to the true 

posterior 𝑝 𝜃 𝑦 .

This is often done by assuming a particular form for 𝑞 (fixed form VB) and 

then optimizing its sufficient statistics.



Kullback–Leibler (KL) divergence

• asymmetric measure of the difference 

between two probability distributions P 

and Q

• Interpretations of DKL(P‖Q): 

– "Bayesian surprise" when Q=prior, 

P=posterior: measure of the 

information gained when one 

updates one's prior beliefs to the 

posterior P

– a measure of the information lost 

when Q is used to approximate P

• non-negative: 0 (zero when P=Q)

   
 

 
lnKL

i

P i
D P Q P i

Q i


   
 

 
lnKL

p x
D P Q p x dx

q x
 



Variational calculus

Standard calculus
Newton, Leibniz, and 

others

• functions

𝑓: 𝑥 ↦ 𝑓 𝑥

• derivatives  
d𝑓
d𝑥

Example: maximize 

the likelihood 

expression 𝑝 𝑦 𝜃
w.r.t. 𝜃

Variational 

calculus
Euler, Lagrange, and 

others

• functionals

𝐹: 𝑓 ↦ 𝐹 𝑓

• derivatives  
d𝐹
d𝑓

Example: maximize 

the entropy 𝐻 𝑝
w.r.t. a probability 

distribution 𝑝 𝑥

Leonhard Euler
(1707 – 1783)

Swiss mathematician, 
‘Elementa Calculi 

Variationum’



Variational Bayes

𝐹 𝑞 is a functional wrt. the 

approximate posterior 𝑞 𝜃 .

Maximizing 𝐹 𝑞, 𝑦 is equivalent to:

• minimizing KL[𝑞| 𝑝

• tightening 𝐹 𝑞, 𝑦 as a lower

bound to the log model evidence

When 𝐹 𝑞, 𝑦 is maximized, 𝑞 𝜃 is 

our best estimate of the posterior.

ln𝑝(𝑦) = KL[𝑞| 𝑝 + 𝐹 𝑞, 𝑦

divergence 
≥ 0

(unknown)

neg. free 
energy

(easy to evaluate 
for a given 𝑞)

KL[𝑞| 𝑝

ln 𝑝 𝑦 ∗

𝐹 𝑞, 𝑦

KL[𝑞| 𝑝

ln 𝑝 𝑦

𝐹 𝑞, 𝑦

initialization 
…

… 
convergence



Derivation of the (negative) free energy approximation

• See whiteboard!

• (or Appendix to Stephan et al. 2007, NeuroImage 38: 387-401)



Mean field assumption

Factorize the approximate 

posterior 𝑞 𝜃 into independent 

partitions:

𝑞 𝜃 = 

𝑖

𝑞𝑖 𝜃𝑖

where 𝑞𝑖 𝜃𝑖 is the approximate 

posterior for the 𝑖th subset of 

parameters.

For example, split parameters 

and hyperparameters:
𝜃1

𝜃2

𝑞 𝜃1 𝑞 𝜃2

Jean Daunizeau, www.fil.ion.ucl.ac.uk/ 
~jdaunize/presentations/Bayes2.pdf       , | ,p y q q q      



VB in a nutshell (under mean-field approximation)

       , | ,p y q q q      
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 Iterative updating of sufficient statistics of approx. posteriors by 

gradient ascent.

     

     

ln | , , , |

ln | , , , , |
q

p y m F KL q p y

F p y KL q p m

   

     

    

    

 Mean field approx.

 Neg. free-energy 

approx. to model 

evidence.

 Maximise neg. free 

energy  wrt. q = 

minimise divergence,

by maximising

variational energies



Model comparison and selection

Given competing hypotheses 

on structure & functional 

mechanisms of a system, which 

model is the best?

For which model m does p(y|m)

become maximal?

Which model represents the

best balance between model 

fit and model complexity?

Pitt & Miyung (2002) TICS



Bayesian model selection (BMS)

Posterior model probability
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
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• First step of inference: define model 

space M

• Inference on model structure m: 

• For a uniform prior on m, model 

evidence sufficient for model 

selection

[1, [M  

( | ) ( | , ) ( | ) p y m p y m p m d   

Model evidence:



( | ) ( | , ) ( | ) p y m p y m p m d   

Model evidence:

Various approximations:

- negative free energy (F)

- Akaike Information Criterion (AIC)

- Bayesian Information Criterion (BIC)

Bayesian model selection (BMS)

probability that data were 

generated by model m, 

averaging over all possible 

parameter values (with 

probability weights as specified 

by the prior)

accounts for both accuracy and 

complexity of the model

all possible datasets

y

p
(y
|
m
)

Ghahramani 2004



( | ) ( | , ) ( | ) p y m p y m p m d   

Model evidence:

Bayesian model selection (BMS)

“If I randomly sampled from my 

prior and plugged the resulting 

value into the likelihood 

function, how close would the 

predicted data be – on average 

– to my observed data?”

accounts for both accuracy and 

complexity of the model

all possible datasets

y

p
(y
|
m
)

Ghahramani 2004

Various approximations:

- negative free energy (F)

- Akaike Information Criterion (AIC)

- Bayesian Information Criterion (BIC)



pmypAIC  ),|(log 

Logarithm is a 

monotonic function

Maximizing log model evidence

= Maximizing model evidence

)(),|(log                    

)()(  )|(log

mcomplexitymyp

mcomplexitymaccuracymyp







N
p

mypBIC log
2

),|(log  

Akaike Information Criterion:

Bayesian Information Criterion:

Log model evidence = balance between fit and complexity

Approximations to the model evidence 

No. of 

parameters

No. of

data points



The (negative) free energy approximation F

   log ( | , ) , |

accuracy complexity

F p y m KL q p m      

KL[𝑞| 𝑝

ln 𝑝 𝑦|𝑚

𝐹 𝑞, 𝑦   log ( | ) , | ,p y m F KL q p y m     

Like AIC/BIC, F is an accuracy/complexity tradeoff:

F is a lower bound on the log model evidence:



The (negative) free energy approximation

• Log evidence is thus expected log likelihood (wrt. q) plus 2 KL's:

       

log ( | )

log ( | , ) , | , | ,

p y m

p y m KL q p m KL q p y m            

   

   

log ( | ) , | ,

log ( | , ) , |

accuracy complexity

F p y m KL q p y m

p y m KL q p m

 

  

    

    



The complexity term in F

• In contrast to AIC & BIC, the complexity term of the negative free energy F

accounts for parameter interdependencies. 

Under Gaussian assumptions about the posterior (Laplace approximation):

• The complexity term of F is higher

– the more independent the prior parameters ( effective DFs)

– the more dependent the posterior parameters

– the more the posterior mean deviates from the prior mean

 
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Bayes factors
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But: the log evidence is just some number – not very intuitive!

A more intuitive interpretation of model comparisons is made possible by Bayes 

factors:

To compare two models, we could just compare their log evidences.

B12 p(m1|y) Evidence

1 to 3 50-75% weak

3 to 20 75-95% positive

20 to 150 95-99% strong

 150  99% Very strong

Kass & Raftery classification:

Kass & Raftery 1995, J. Am. Stat. Assoc.



Fixed effects BMS at group level

Group Bayes factor (GBF) for 1...K subjects:

Average Bayes factor (ABF):

Problems:

- blind with regard to group heterogeneity

- sensitive to outliers


k

k

ijij BFGBF )(

( )k
Kij ij

k

ABF BF 
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Random effects BMS for heterogeneous groups

Dirichlet parameters 

= “occurrences” of models in the population

Dirichlet distribution of model probabilities r

Multinomial distribution of model labels m

Measured data y

Model inversion 

by Variational

Bayes or MCMC

Stephan et al. 2009, NeuroImage



Random effects BMS for heterogeneous groups


k = 1...K

n = 1...N

mnk

yn

rk

Dirichlet parameters 

= “occurrences” of models in the population

Dirichlet distribution of model probabilities r

Multinomial distribution of model labels m

Measured data y

Model inversion 

by Variational

Bayes or MCMC

Stephan et al. 2009, NeuroImage



Four equivalent options for reporting model ranking by

random effects BMS

1. Dirichlet parameter estimates

2. expected posterior probability of 

obtaining the k-th model for any 

randomly selected subject

3. exceedance probability that a 

particular model k is more likely than 

any other model (of the K models 

tested), given the group data

4. protected exceedance probability: 

see below

)( 1 Kkqkr   



{1... }, {1... | }:

( | ; )k k j

k K j K j k

p r r y 

    
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Data: Stephan et al. 2003, Science

Models: Stephan et al. 2007, J. Neurosci.

Example: Hemispheric interactions during vision
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Example: Synaesthesia

• “projectors” experience 

color externally colocalized

with a presented grapheme

• “associators” report an 

internally evoked 

association

• across all subjects: no

evidence for either model

• but BMS results map

precisely onto projectors

(bottom-up mechanisms) 

and associators (top-down)

van Leeuwen et al. 2011, J. Neurosci.



Overfitting at the level of models

•  #models   risk of overfitting

• solutions: 

– regularisation: definition of model

space = choosing priors p(m)

– family-level BMS

– Bayesian model averaging (BMA)
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posterior model probability:

BMA:



Model space partitioning: comparing model families

• partitioning model space into K subsets 

or families:

• pooling information over all models in 

these subsets allows one to compute 

the probability of a model family, given 

the data

• effectively removes uncertainty about 

any aspect of model structure, other 

than the attribute of interest (which 

defines the partition)

Stephan et al. 2009, NeuroImage

Penny et al. 2010, PLoS Comput. Biol.

 1,..., KM f f

 kp f



Family-level inference: random effects – a special case

• When the families are of equal size, one can simply sum the posterior model 

probabilities within families by exploiting the agglomerative property of the 

Dirichlet distribution:

Stephan et al. 2009, NeuroImage
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MMN

A1 A1

STG

input

STG

IFG

prediction

prediction 

error

input

standards
deviants

Mismatch negativity (MMN)

Garrido et al. 2009, Clin. Neurophysiol.

• elicited by surprising stimuli 

(scales with unpredictability)

•  in schizophrenic patients

• classical interpretations:

– pre-attentive change

detection

– neuronal adaptation

• current theories:

– reflection of (hierarchical) 

Bayesian inference



Lieder et al. 2013, PLoS Comput. Biol.

Modelling Trial-by-Trial Changes of the Mismatch 

Negativity (MMN)



Lieder et al. 2013, PLoS Comput. Biol.

MMN model comparison 

at multiple levels

 Comparing 

individual 

models

 Comparing 

MMN 

theories

 Comparing 

modeling 

frameworks



Bayesian Model Averaging (BMA)

• abandons dependence of parameter 

inference on a single model and takes into 

account model uncertainty

• uses the entire model space considered (or 

an optimal family of models) 

• averages parameter estimates, weighted 

by posterior model probabilities

• represents a particularly useful alternative

– when none of the models (or model 

subspaces) considered clearly 

outperforms all others

– when comparing groups for which the 

optimal model differs
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Penny et al. 2010, PLoS Comput. Biol.
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NB: p(m|y1..N) can be obtained 

by either FFX or RFX BMS

single-subject BMA:

group-level BMA:



Schmidt et al. 2013, JAMA Psychiatry

Prefrontal-parietal connectivity during 

working memory in schizophrenia

• 17 at-risk mental 

state (ARMS) 

individuals

• 21 first-episode 

patients

(13 non-treated)

• 20 controls



Schmidt et al. 2013, JAMA Psychiatry

BMS results for all groups



BMA results:  PFC  PPC connectivity

Schmidt et al. 2013, JAMA Psychiatry

17 ARMS, 21 first-episode (13 non-treated), 

20 controls



Protected exceedance probability:

Using BMA to protect against chance findings

• EPs express our confidence that the posterior probabilities of models are

different – under the hypothesis H1 that models differ in probability: rk1/K

• does not account for possibility "null hypothesis" H0: rk=1/K

• Bayesian omnibus risk (BOR) of wrongly accepting H1 over H0:

• protected EP: Bayesian model averaging over H0 and H1:

Rigoux et al. 2014, NeuroImage



inference on model structure   or   inference on model parameters?

inference on 

individual models or   model space partition?

comparison of model 

families using 

FFX or RFX BMS

optimal model structure assumed 

to be identical across subjects?

FFX BMS RFX BMS

yes no

inference on 

parameters of an optimal model   or   parameters of all models?

BMA

definition of model space

FFX analysis of 

parameter estimates

(e.g. BPA)

RFX analysis of 

parameter estimates

(e.g. t-test, ANOVA)

optimal model structure assumed 

to be identical across subjects?

FFX BMS

yes no

RFX BMS

Stephan et al. 2010, NeuroImage
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