Computational neuroimaging (model-based fMRI)

Birte Toussaint

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Methods & Models for fMRI Analysis 3 December 2019

With thanks to Andreea Diaconescu for lecture structure and images, and Klaas Enno Stephan for slides

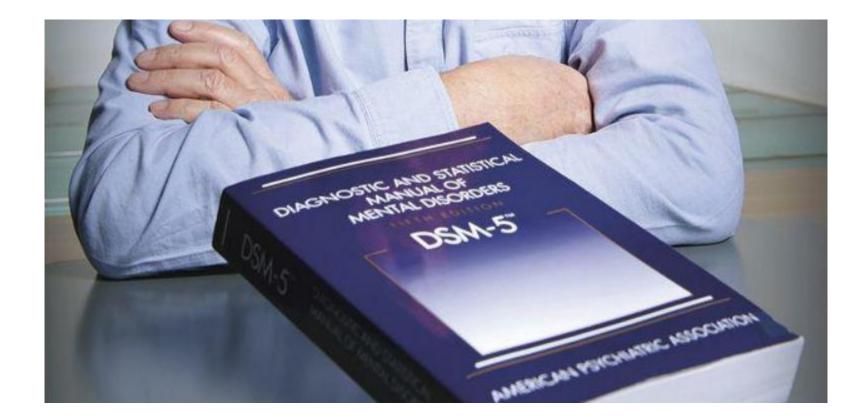
- Why neuroimaging/ fMRI?
 - → Measure brain activity

- Why neuroimaging/ fMRI? → Measure brain activity
- So far: "conventional" analyses
 → What can we learn from these?

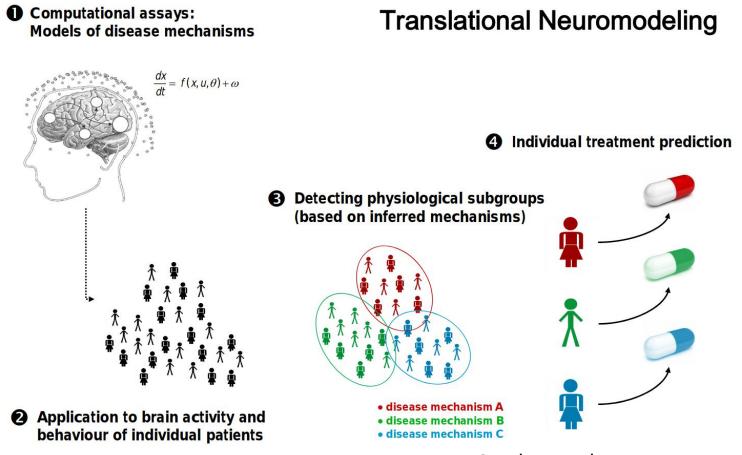
- Why neuroimaging/ fMRI? → Measure brain activity
- So far: "conventional" analyses
 → What can we learn from these?
- We want to know more!

- Why neuroimaging/ fMRI? → Measure brain activity
- So far: "conventional" analyses → What can we learn from these?
- We want to know more!
 - \rightarrow effective connectivity
 - → neural mechanisms
 - → "computational assays"

Lecture 2 recap: Diagnostic classification in psychiatry

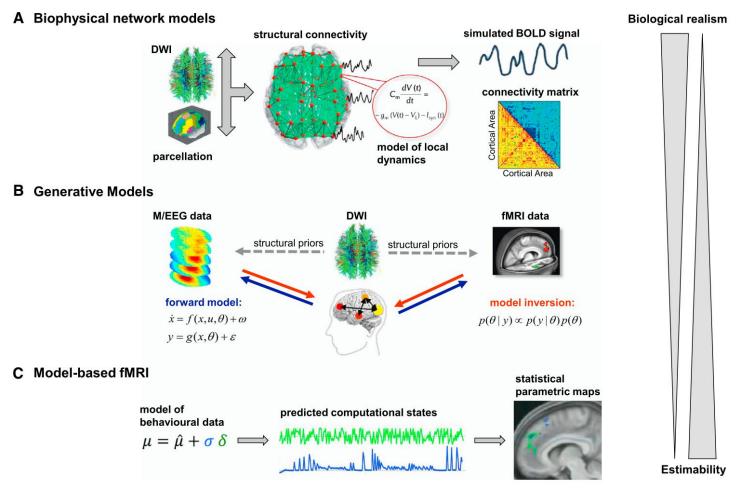


Lecture 2 recap: Computational psychiatry



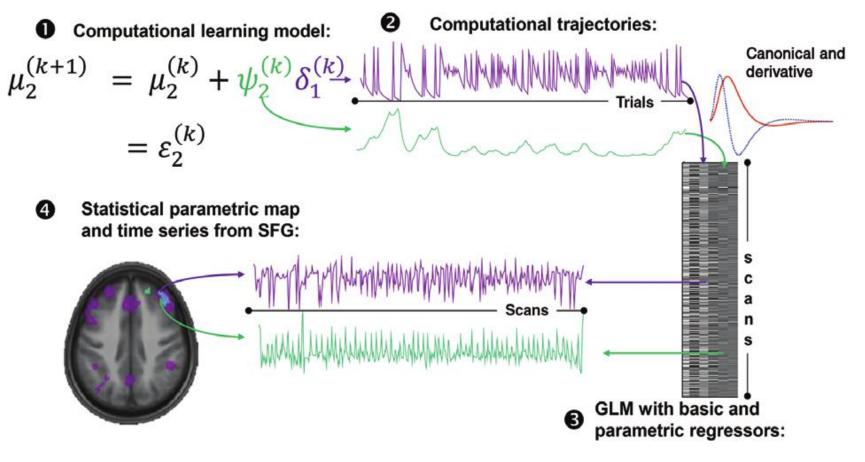
Stephan et al., 2015, Neuron

Computational neuroimaging examples



Stephan et al., 2015, Neuron

Model-based fMRI



Iglesias et al., 2017, WIREs Cogn Sci

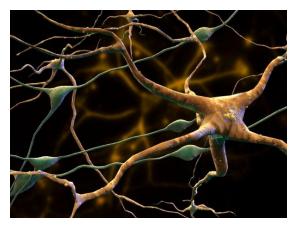
Advantages of computational neuroimaging

Computational neuroimaging allows us to:

- Infer computational mechanisms underlying brain function
- Localise these mechanisms
- **Compare** different models

The "explanatory gap"

Biological



- Molecular
- Neurochemical

Cognitive

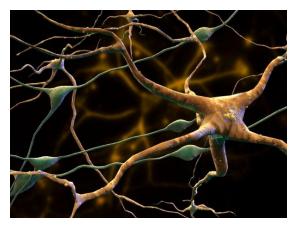
- Computational
- "Cognitive/ computational phenotyping"

Phenomenological

- Performance accuracy
- Reaction time
- Choices, preferences

The "explanatory gap"

Biological



- Molecular
- Neurochemical

Cognitive

- Computational
- "Cognitive/ computational phenotyping"

Phenomenological

- Performance accuracy
- Reaction time
- Choices, preferences

Computational models

Three levels of analysis

Computational level

• What does the system do (and why)?

David Marr

• Algorithmic level

• How does the system do what it does? What representations does it use?

Implementational level

• How is the system physically realised?

Using model-based fMRI to analyse brain function

• Example: How does the human brain perceive temperature?

1. Computational level

2. Algorithmic level

3. Implementational level

Using model-based fMRI to analyse brain function

• Example: How does the human brain perceive temperature?

1. Computational level

2. Algorithmic level

3. Implementational level

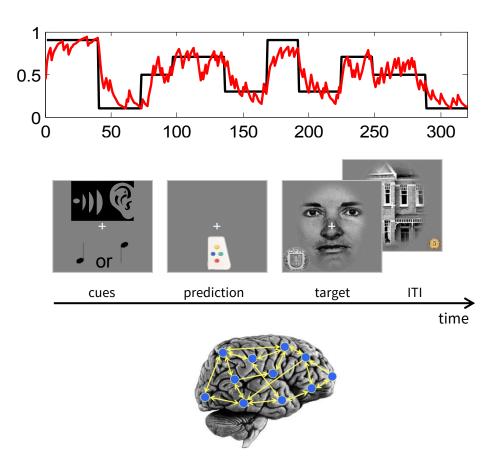
But first: why use model-based fMRI to answer this question?

Using model-based fMRI to analyse brain function

- 3 ingredients:
 - 1. Computational model

2. Experimental paradigm

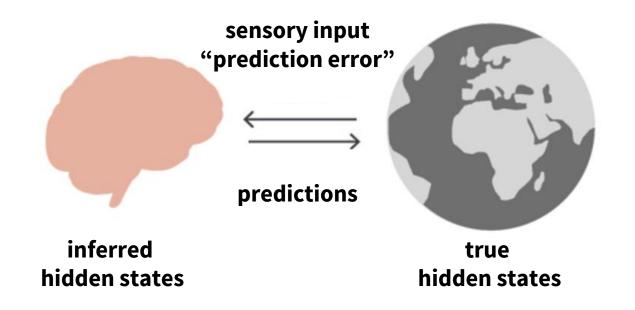
3. Model-based fMRI analysis



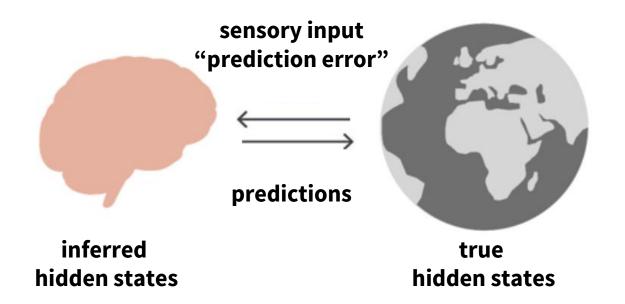
1. Computational level

• What does the brain do (and why)?

Bayesian Brain hypothesis

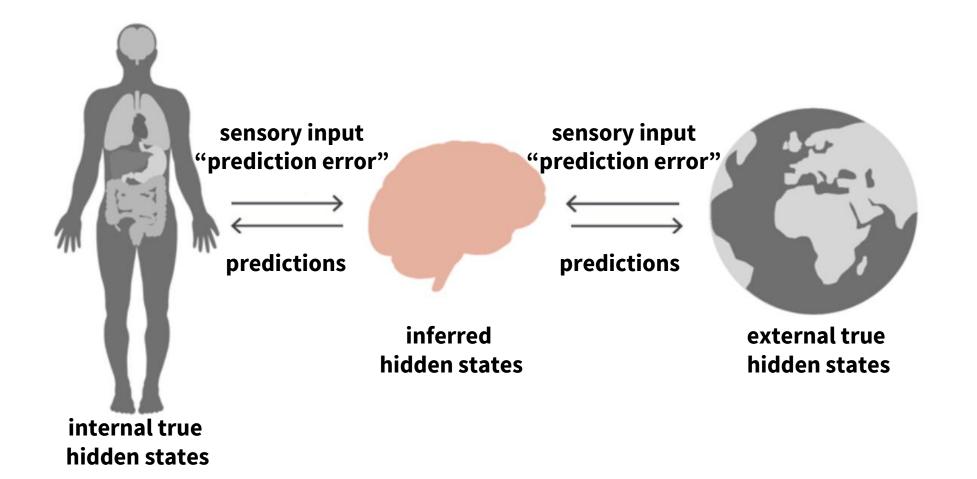


Bayesian Brain hypothesis



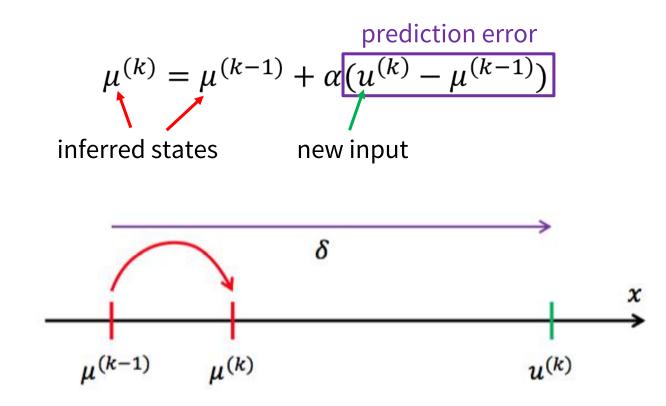
• The brain maintains a model of its environment

Bayesian Brain hypothesis



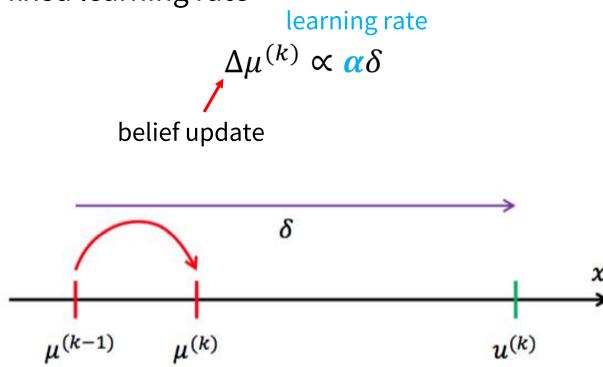
Example of a simple learning model

• Rescorla-Wagner



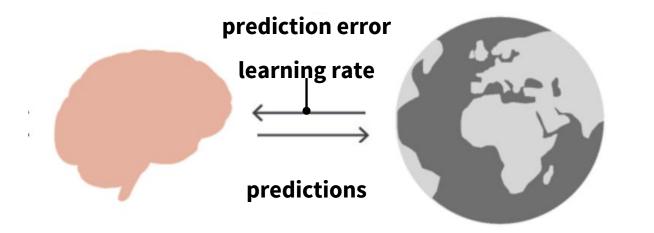
Example of a simple learning model

- Rescorla-Wagner
 - updates via fixed learning rate



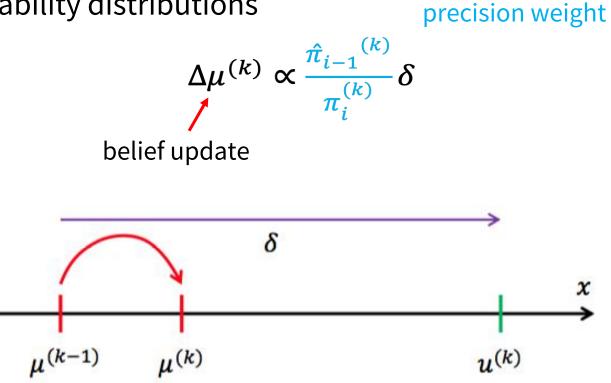
Computational variables

• Rescorla-Wagner



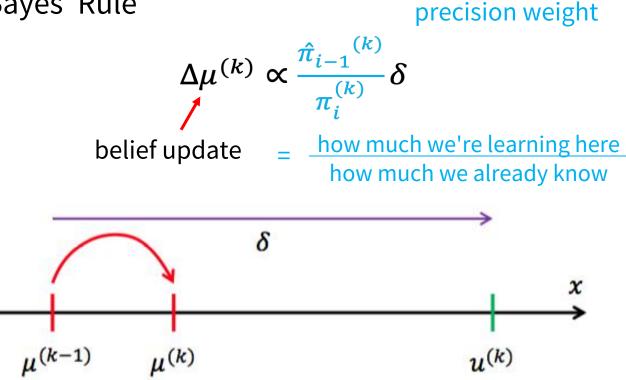
Example of a hierarchical learning model

- Hierarchical Gaussian Filter
 - beliefs: probability distributions



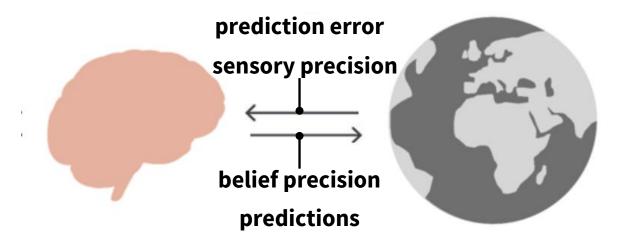
Example of a hierarchical learning model

- Hierarchical Gaussian Filter
 - updates via Bayes' Rule



Computational variables

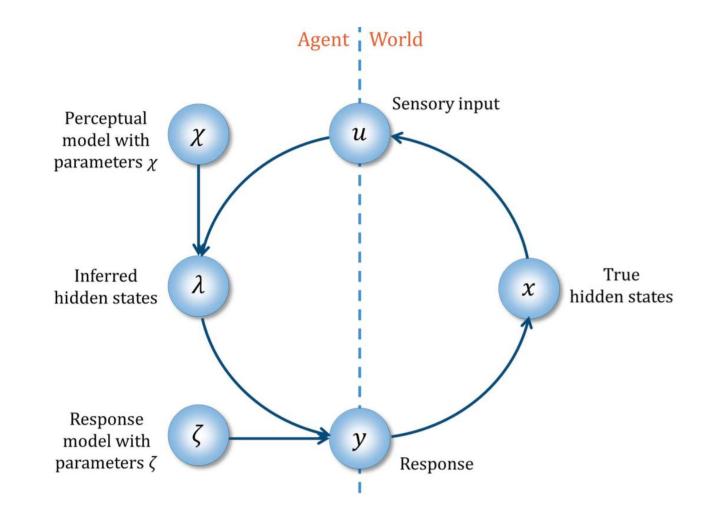
• Hierarchical Gaussian Filter



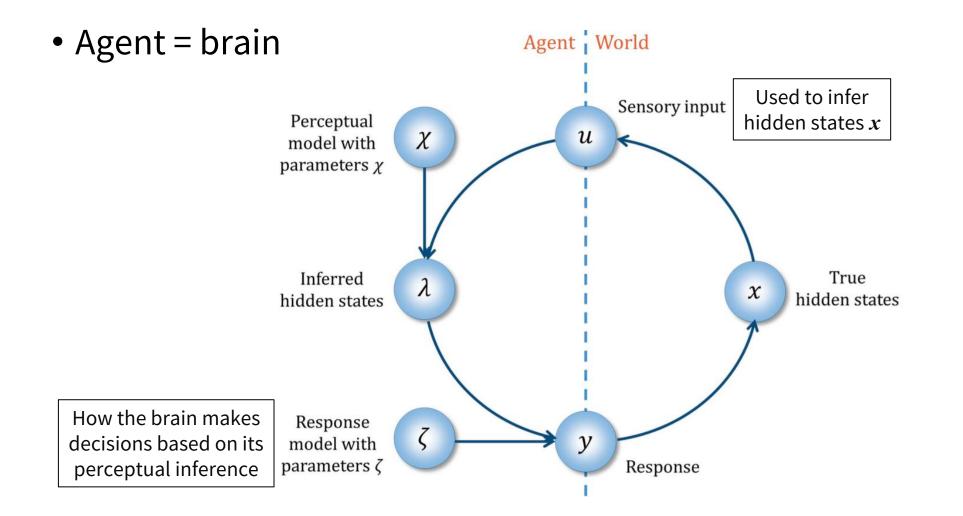
2. Algorithmic level

• How does the brain update its model?

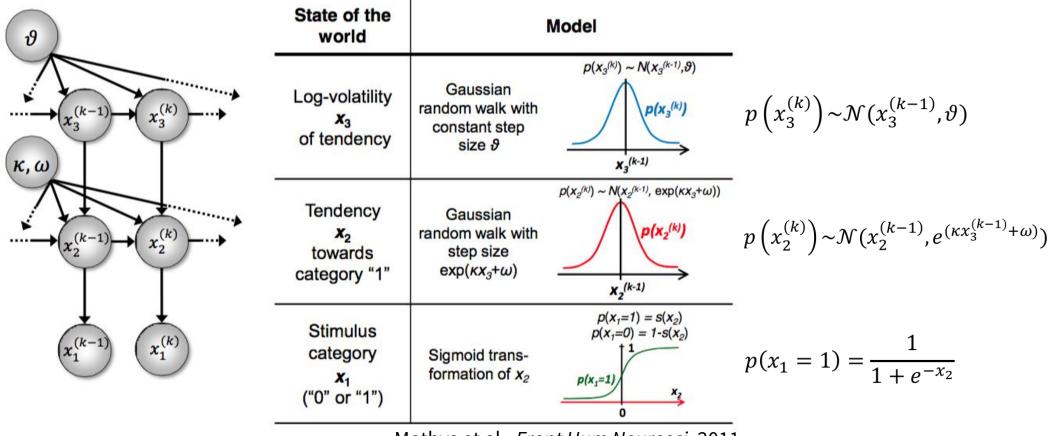
A modelling framework



A modelling framework

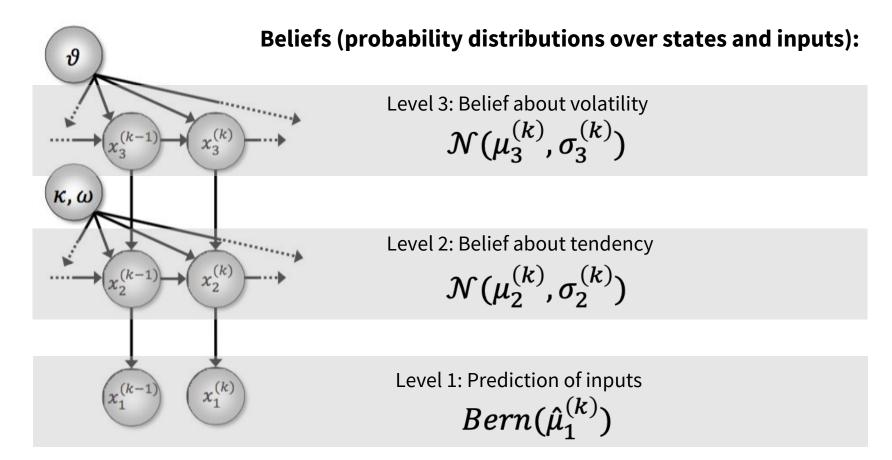


Perceptual model: The Hierarchical Gaussian Filter

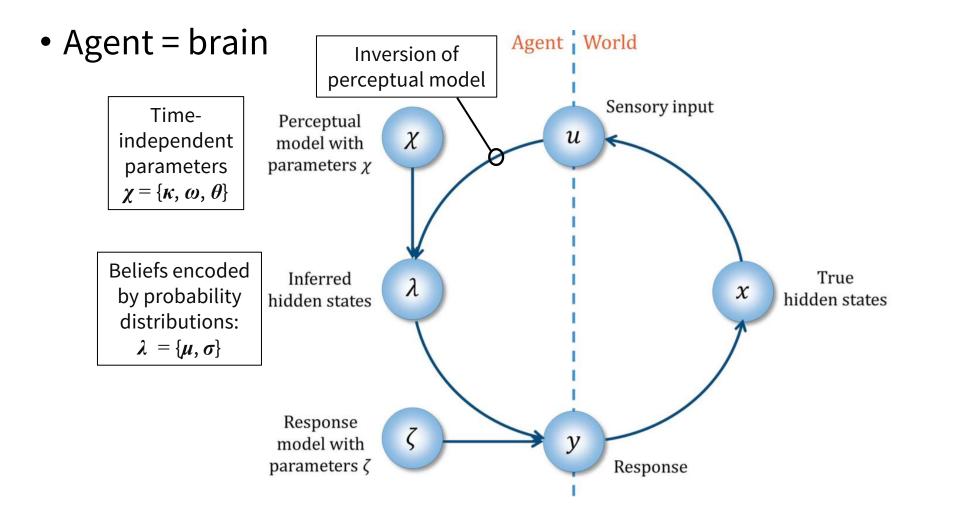


Mathys et al., Front Hum Neurosci, 2011

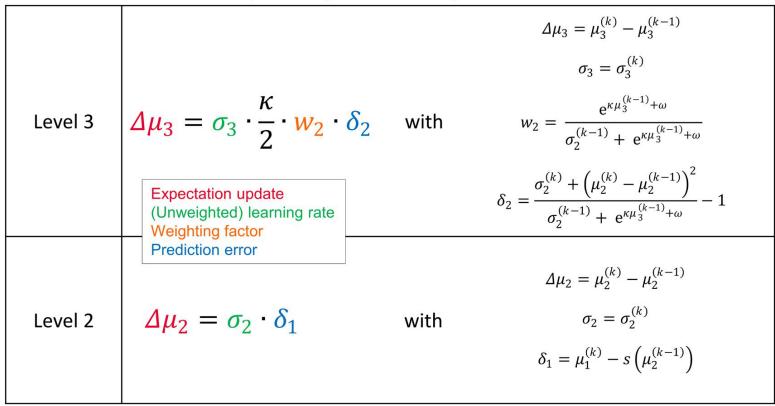
Perceptual model: The Hierarchical Gaussian Filter



A modelling framework

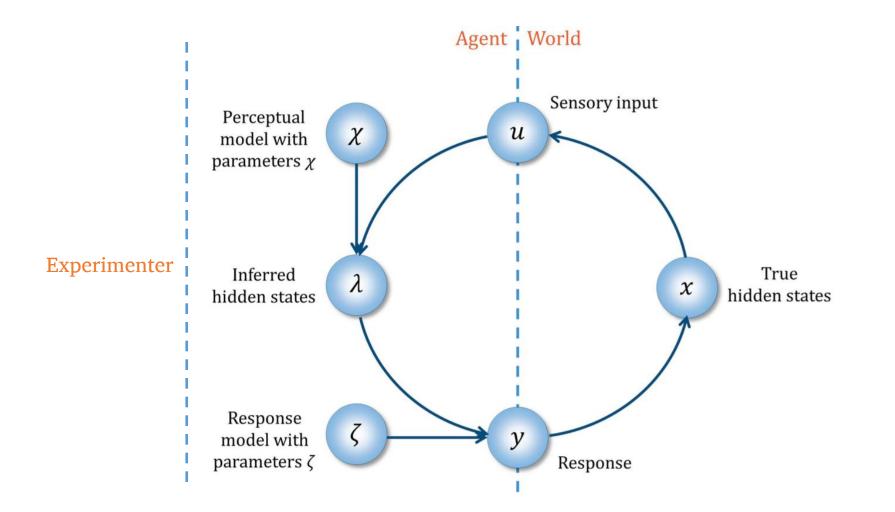


HGF belief updates

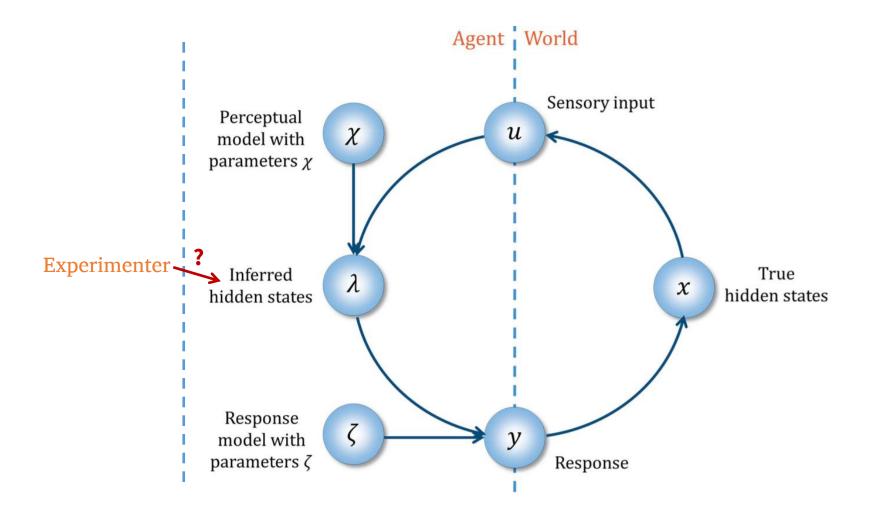


Mathys et al., Front Hum Neurosci, 2011

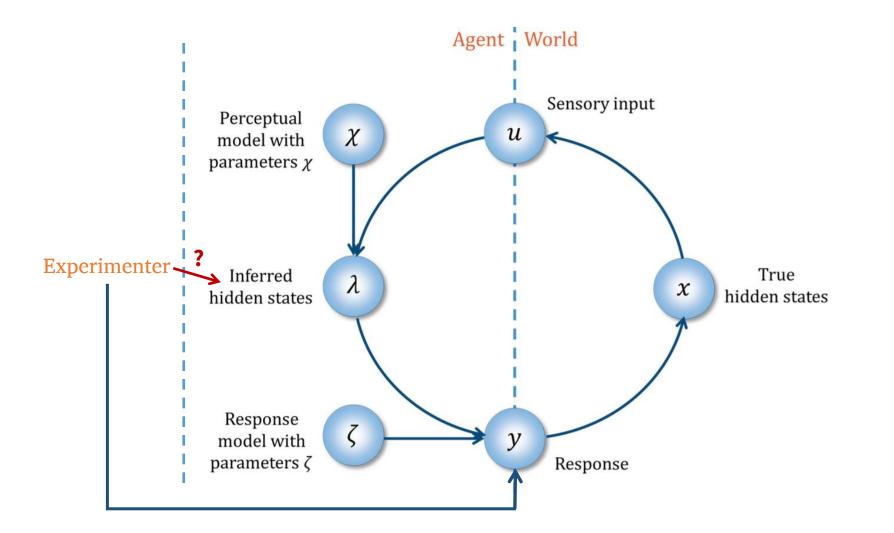
Observing the observer



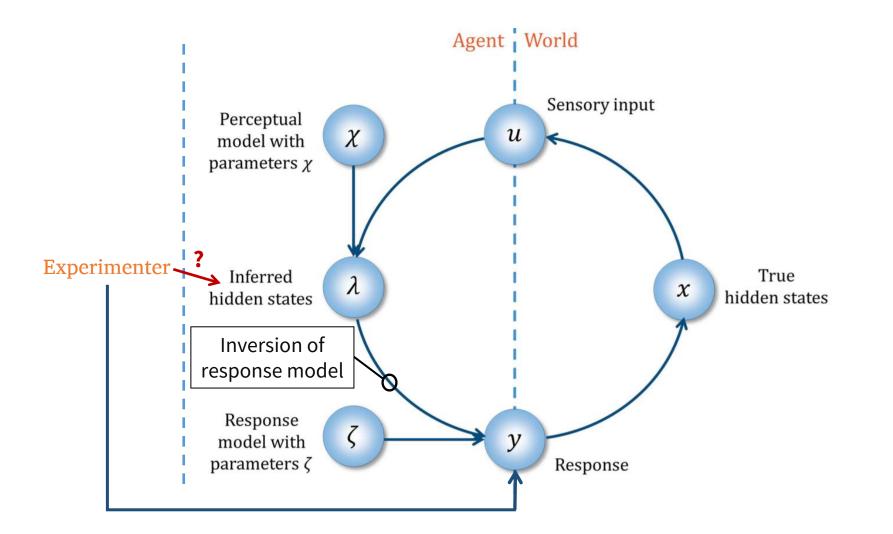
Observing the observer



Observing the observer

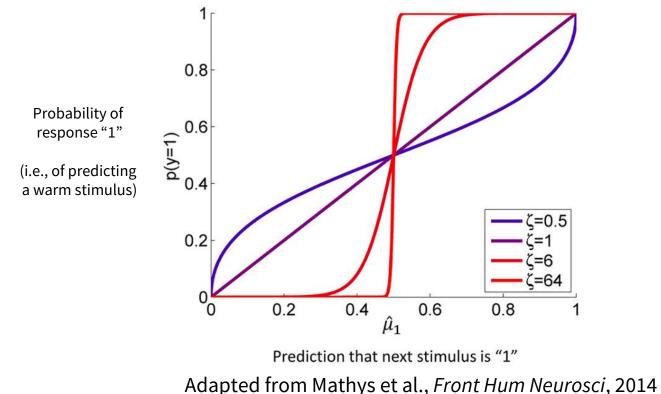


Observing the observer



Example of a response model

- Translate beliefs into responses with a unit-square sigmoid:
 - Parameter ζ represents inverse response noise



Estimating subject-specific parameters

• Joint distribution for observations and perceptual model parameters:

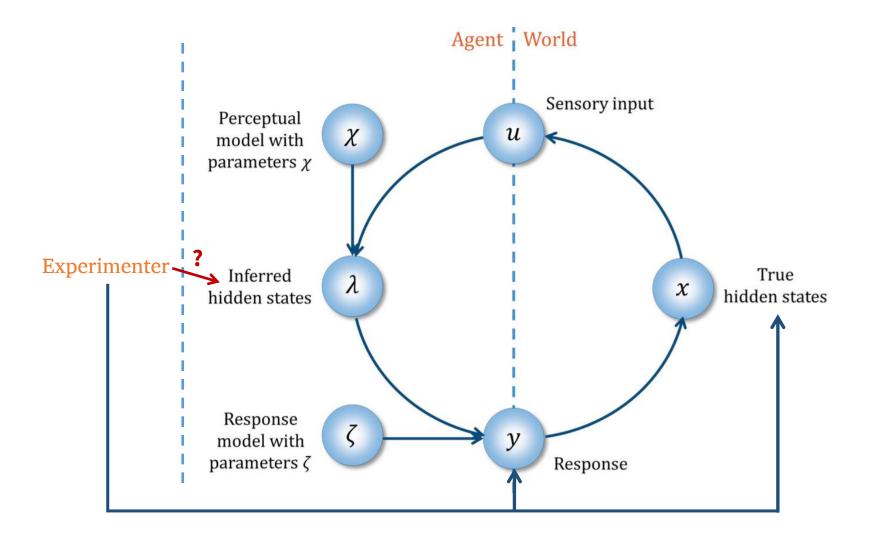
$$p(\boldsymbol{y},\boldsymbol{\chi},\boldsymbol{\lambda}^{(0)},\boldsymbol{\zeta}|\boldsymbol{u}) = p(\boldsymbol{\chi},\boldsymbol{\lambda}^{(0)},\boldsymbol{\zeta}) \prod_{k=1}^{K} p(\boldsymbol{y}^{(k)}|\boldsymbol{\lambda}^{(k)}(\boldsymbol{\chi},\boldsymbol{\lambda}^{(0)},\boldsymbol{u}),\boldsymbol{\zeta})$$

where:

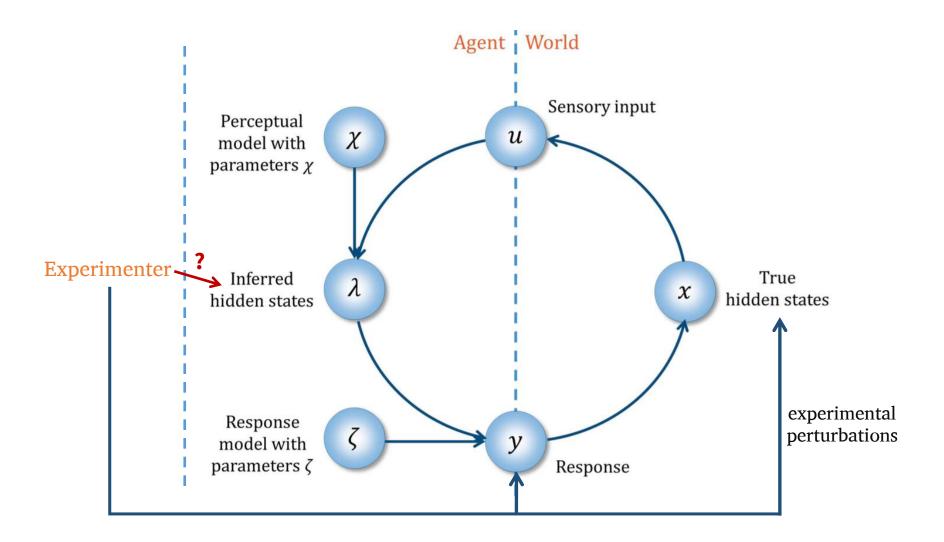
$$u \stackrel{\text{def}}{=} \{u^{(1)}, \dots, u^{(K)}\}$$
$$y \stackrel{\text{def}}{=} \{y^{(1)}, \dots, y^{(K)}\}$$
$$\lambda^{(k)} \stackrel{\text{def}}{=} \{\mu_1^{(1)}, \pi_1^{(k)}, \dots, \mu_1^{(K)}, \pi_1^{(K)}\}$$

• Find maximum-a-posteriori estimate for parameters χ , $\lambda^{(0)}$, ζ

Observing the observer

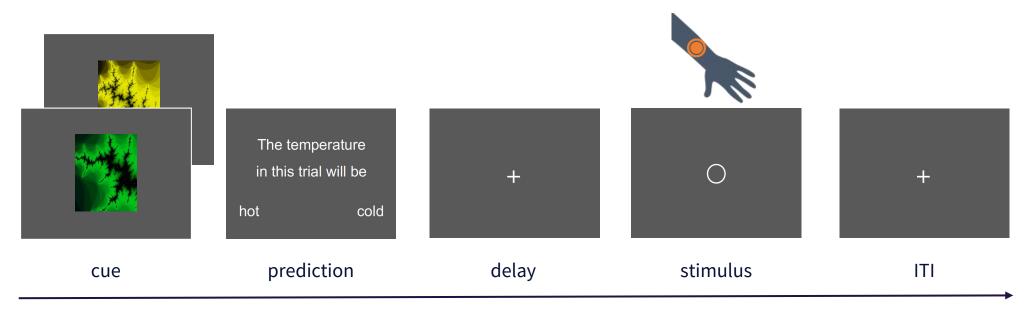


Observing the observer



Experimental paradigm

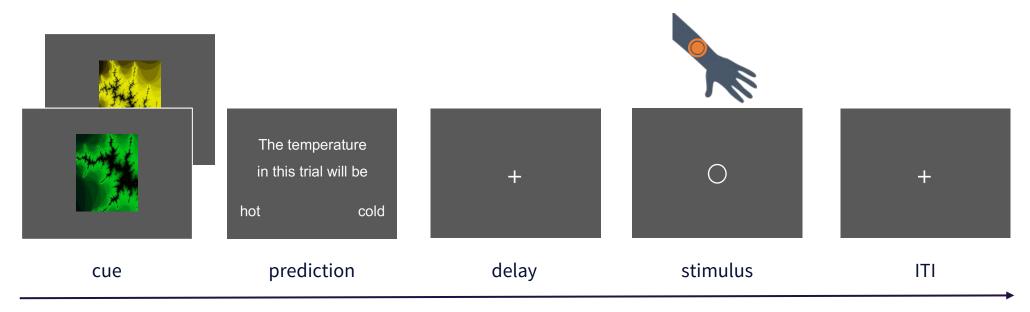
• Learning in an uncertain environment:



• *P*(*stimulus* = *hot* | *cue* = *green*) + *P*(*stimulus* = *hot* | *cue* = *yellow*) = 100 %

Experimental paradigm

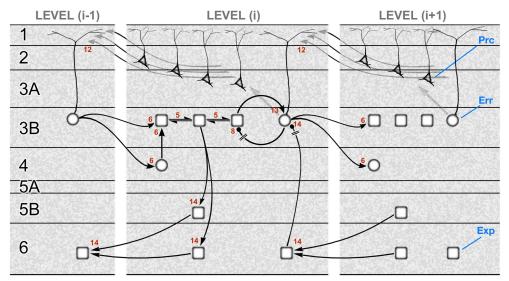
• Learning in an uncertain environment:



- *P*(*stimulus* = *hot* | *cue* = *green*) + *P*(*stimulus* = *hot* | *cue* = *yellow*) = 100 %
- probabilities change: stable and volatile phases

3. Implementational level

- How is the brain's model of temperature physically realised?
 - What does the computational hierarchy look like?
 - whole-brain fMRI
 - identify which brain regions are involved
 - estimate effective connectivity
 - Which neurons/ circuits are involved?
 - laminar (= high resolution) fMRI
 - computational variables represented by separate neuronal populations?
 - → i.e. in distinct cortical layers
 - → model-based fMRI analysis

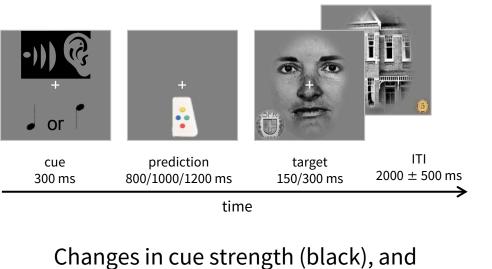


Shipp, Front Psychol., 2016

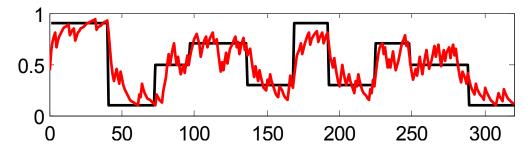
Steps for model-based fMRI

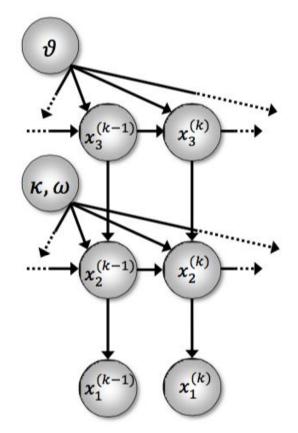
- 1. Choose a model
- 2. Find best-fitting parameters of model to behavioral data
- 3. Generate model-based time series
- 4. Convolve time series with HRF
- 5. Regress against fMRI data

Applications of model-based fMRI



posterior expectation of visual category (red)

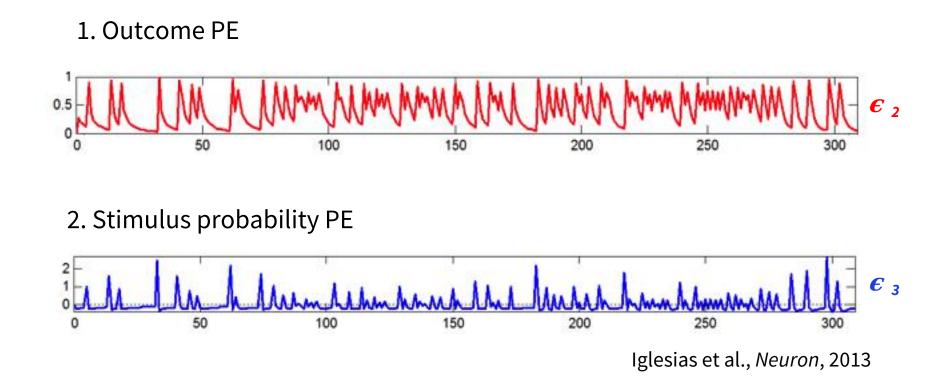




Iglesias et al., Neuron, 2013

Applications of model-based fMRI

• 2 types of PE:

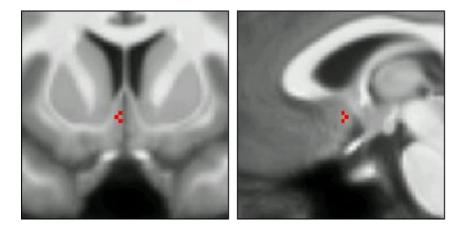


Applications of model-based fMRI

1. Outcome PE

- right VTA
- dopamine

2. Stimulus probability PE



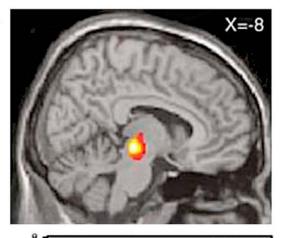
- left basal forebrain
- acetylcholine

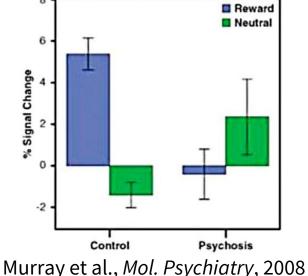
Iglesias et al., *Neuron*, 2013

Key message: abstract model-based quantities correlate with strong neuronal activation

Applications of model-based fMRI in psychiatry

- Theory of schizophrenia:
 - dysregulated activity of DA neurons
 - PE signals ill-timed and/or abnormal precision
 - "aberrant salience" of random/ irrelevant events
 - prediction:
 - diminished difference in PE response to relevant and neutral stimuli in patients
 - model-based fMRI studies:
 - PE responses in midbrain, ventral striatum differ between patients and controls
 - patients: less activity on rewarding/ aversive trials, more activity in response to neutral/ irrelevant cues





A word about design efficiency

- Event-related fMRI: optimise efficiency by event spacing and sequencing
- Model-based fMRI: regressors and design matrix not fully specified before data collection

To estimate design efficiency:

- Simulate behavioural data, conduct behavioral pilot study
- Obtain simulated/ pilot time course from the model
- Optimise design efficiency

Model-based fMRI in a nutshell

- Goal: uncover hidden variables or processes
- Use computational models to generate regressors of interest
 - not just stimulus inputs and behavioural responses
- Address questions about specific cognitive processes
 - Which brain regions are activated in a particular cognitive task?

Further reading

- Stephan KE, Iglesias S, Heinzle J, Diaconescu AO (2015) Translational Perspectives for Computational Neuroimaging. Neuron 87: 716-732.
- Iglesias, S., Mathys, C., Brodersen, K.H., Kasper, L., Piccirelli, M., den Ouden, H.E.M., and Stephan, K.E. (2013). Hierarchical Prediction Errors in Midbrain and Basal Forebrain during Sensory Learning. Neuron 80, 519–530.
- Diaconescu, A.O., Mathys, C., Weber, L.A.E., Kasper, L., Mauer, J., and Stephan, K.E. (2017). Hierarchical prediction errors in midbrain and septum during social learning. Soc. Cogn. Affect. Neurosci. *12*, 618–634.
- Iglesias, S., Tomiello, S., Schneebeli, M., and Stephan, K.E. (2016). Models of neuromodulation for computational psychiatry. Wiley Interdiscip. Rev. Cogn. Sci.
- Mathys, C., Daunizeau, J., Friston, K.J., and Stephan, K.E. (2011). A Bayesian foundation for individual learning under uncertainty. Front. Hum. Neurosci. *5*.
- Mathys, C.D., Lomakina, E.I., Daunizeau, J., Iglesias, S., Brodersen, K.H., Friston, K.J., and Stephan, K.E. (2014). Uncertainty in perception and the Hierarchical Gaussian Filter. Front. Hum. Neurosci. 8.

Thank you.