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Why computational neuroimaging?

• Why neuroimaging/ fMRI?
 Measure brain activity

• So far: “conventional” analyses
 What can we learn from these?

• We want to know more!
 effective connectivity
 neural mechanisms
 “computational assays”



Lecture 2 recap: 
Diagnostic classification in psychiatry

 



Lecture 2 recap: 
Computational psychiatry

 

Stephan et al., 2015, Neuron



Computational neuroimaging examples

 

Stephan et al., 2015, Neuron



Model-based fMRI

 

Iglesias et al., 2017, WIREs Cogn Sci



Advantages of computational neuroimaging

 Computational neuroimaging allows us to:

• Infer computational mechanisms underlying brain function

• Localise these mechanisms

• Compare different models
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Computational models



Three levels of analysis

 • Computational level 
• What does the system do (and why)?

• Algorithmic level
• How does the system do what it does?  What representations does it use? 
 

• Implementational level
• How is the system physically realised?

David Marr
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3. Implementational level

• But first: why use model-based fMRI to answer this question?



Using model-based fMRI
to analyse brain function

 • 3 ingredients:

1. Computational model

2. Experimental paradigm

3. Model-based fMRI analysis
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1. Computational level

 • What does the brain do (and why)?



Bayesian Brain hypothesis
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• The brain maintains a model of its environment
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Bayesian Brain hypothesis
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Example of a simple learning model

 • Rescorla-Wagner

inferred states

prediction error

new input



Example of a simple learning model

 • Rescorla-Wagner
• updates via fixed learning rate

belief update

learning rate



Computational variables
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• Rescorla-Wagner

learning rate



Example of a hierarchical learning model

 • Hierarchical Gaussian Filter
• beliefs: probability distributions

belief update

precision weight 



Example of a hierarchical learning model

 • Hierarchical Gaussian Filter
• updates via Bayes' Rule

belief update

precision weight 

how much we're learning here
how much we already know

= 



Computational variables

 

predictions

prediction error

• Hierarchical Gaussian Filter

sensory precision

belief precision



2. Algorithmic level
• How does the brain update its model?



A modelling framework



A modelling framework

• Agent = brain

How the brain makes 
decisions based on its 
perceptual inference

Used to infer 
hidden states x



Perceptual model:
The Hierarchical Gaussian Filter

 

Mathys et al., Front Hum Neurosci, 2011
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Perceptual model:
The Hierarchical Gaussian Filter
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Beliefs (probability distributions over states and inputs): 

Level 3: Belief about volatility

Level 2: Belief about tendency

Level 1: Prediction of inputs



A modelling framework

• Agent = brain

Time- 
independent 
parameters
χ = {κ, ω, θ} 

Beliefs encoded 
by probability 
distributions: 

λ  = {μ, σ}

Inversion of 
perceptual model



HGF belief updates

Mathys et al., Front Hum Neurosci, 2011
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Observing the observer

Experimenter ?

Inversion of 
response model



Example of a response model

 • Translate beliefs into responses with a unit-square sigmoid:
• Parameter ζ represents inverse response noise

Probability of 
response “1”

(i.e., of predicting 
a warm stimulus)

Adapted from Mathys et al., Front Hum Neurosci, 2014



• Joint distribution for observations and perceptual model     
parameters:

where:

• Find maximum-a-posteriori estimate for parameters χ, λ(0), ζ

Estimating subject-specific parameters



Observing the observer

Experimenter ?



Observing the observer

Experimenter ?

experimental 
perturbations



Experimental paradigm

• Learning in an uncertain environment:

cue prediction delay stimulus ITI

• P(stimulus = hot | cue = green) + P(stimulus = hot | cue = yellow) = 100 %



Experimental paradigm

• Learning in an uncertain environment:

cue prediction delay stimulus ITI

• P(stimulus = hot | cue = green) + P(stimulus = hot | cue = yellow) = 100 %
• probabilities change: stable and volatile phases



3. Implementational level

 • How is the brain's model of temperature  physically realised?

• What does the computational hierarchy look like?
• whole-brain fMRI
• identify which brain regions are involved
• estimate effective connectivity

• Which neurons/ circuits are involved?
• laminar (= high resolution) fMRI 
• computational variables represented
     by separate neuronal populations?
 i.e. in distinct cortical layers

    model-based fMRI analysis Shipp, Front Psychol., 2016



Steps for model-based fMRI

 1. Choose a model 

2. Find best-fitting parameters of model to behavioral data

3. Generate model-based time series

4. Convolve time series with HRF

5. Regress against fMRI data



Applications of model-based fMRI

 

0 50 100 150 200 250 300
0

0.5

1

prediction
800/1000/1200 ms

target
150/300 ms

cue
300 ms

or

ITI
2000 ± 500 ms

time

Changes in cue strength (black), and 
posterior expectation of visual category (red)

Iglesias et al., Neuron, 2013



Applications of model-based fMRI

 

1. Outcome PE

2. Stimulus probability PE

• 2 types of PE:

є 2

є 3

Iglesias et al., Neuron, 2013



Applications of model-based fMRI

 

• Key message: abstract model-based quantities correlate with strong neuronal 
activation

Iglesias et al., Neuron, 2013

• right VTA
• dopamine

• left basal forebrain
• acetylcholine

1. Outcome PE 2. Stimulus probability PE 



Applications of model-based fMRI in psychiatry

 

Murray et al., Mol. Psychiatry, 2008

• Theory of schizophrenia:

• dysregulated activity of DA neurons
• PE signals ill-timed and/or abnormal precision
• “aberrant salience” of random/ irrelevant events

• prediction:
• diminished difference in PE response to relevant and 

neutral stimuli in patients

• model-based fMRI studies:
• PE responses in midbrain, ventral striatum differ between 

patients and controls
• patients: less activity on rewarding/ aversive trials, more 

activity in response to neutral/ irrelevant cues



A word about design efficiency

 • Event-related fMRI: optimise efficiency by event spacing and 
sequencing

• Model-based fMRI: regressors and design matrix not fully 
specified before data collection

• To estimate design efficiency:
• Simulate behavioural data, conduct behavioral pilot study
• Obtain simulated/ pilot time course from the model
• Optimise design efficiency 



Model-based fMRI in a nutshell

 • Goal: uncover hidden variables or processes

• Use computational models to generate regressors of interest
• not just stimulus inputs and behavioural responses

• Address questions about specific cognitive processes
• Which brain regions are activated in a particular cognitive task?
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Thank you.


