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Overview of SPM – Random field theory
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Decision:

H0 , H1: zero/non-zero activation
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Decision:

H0 , H1: zero/non-zero activation
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Decision rule (threshold) h, 

determines related error rates     , 

Convention: Penalize complexity

Choose h to give acceptable     under H0
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Types of error
Reality

H1

H0

H0 H1

True negative (TN)

True positive (TP)False positive (FP)

False negative (FN)

specificity: 1-

= TN / (TN + FP)

= proportion of actual 

negatives which are 

correctly identified

sensitivity (power): 1-

= TP / (TP + FN)

= proportion of actual 

positives which are 

correctly identified
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Multiple tests
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Penalize each independent

opportunity for error. 



Multiple tests
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Convention: Choose h to limit 

assuming family-wise H0

hFWER



Issues

1. Voxels or regions

2. Bonferroni too harsh (insensitive)

• Unnecessary penalty for sampling resolution (#voxels/volume) 

• Unnecessary penalty for independence 



• intrinsic smoothness
– MRI signals are aquired in k-space (Fourier space); after projection on anatomical 

space, signals have continuous support

– diffusion of vasodilatory molecules has extended spatial support

• extrinsic smoothness
– resampling during preprocessing

– matched filter theorem 
 deliberate additional smoothing to increase SNR

– Robustness to between-subject anatomical differences



1. Apply high threshold: 

identify improbably high 

peaks

2. Apply lower  threshold: 

identify improbably broad 

peaks

3. Total number of regions?

Acknowledge/estimate dependence 

Detect effects in smooth landscape, not voxels



Null distribution?

1.  Simulate null experiments 

2.  Model null experiments



Use continuous random field theory

• image ≈ discretised continuous random field

Discretisation

(“lattice 

approximation”)

Smoothness quantified: resolution elements (‘resels’)

• similar, but not identical to # independent observations

• computed from spatial derivatives of the residuals



Euler characteristic 

– threshold an image at high h

# blobs = Nh

FWER  ≈ E [Nh]

= p (blob)



• General form for expected Euler characteristic
• 2, F, & t fields 

E[Nh(W)] = Sd Rd (W) rd (h)

Small volumes: Anatomical atlas, ‘functional localisers’, orthogonal contrasts, 

volume around previously reported coordinates…

Unified Formula

Rd (W): d-dimensional Minkowski
functional of W

– function of dimension,
space W and smoothness:

R0(W) = N (W) Euler characteristic of W

R1(W) = resel diameter

R2(W) = resel surface area

R3(W) = resel volume

rd (W): d-dimensional EC density of Z(x)

– function of dimension and threshold,
specific for RF type:

E.g. Gaussian RF:

r0(h) = 1- (h)

r1(h) = (4 ln2)1/2 exp(-h2/2) / (2p)

r2(h) = (4 ln2)    exp(-h2/2) / (2p)3/2

r3(h) = (4 ln2)3/2 (h2 -1)   exp(-h2/2) / (2p)2

r4(h) = (4 ln2)2    (h3 -3h) exp(-h2/2) / (2p)5/2

W



Euler characteristic (EC) for 2D images

  3/2 2E (4log 2)(2 ) exp( 0.5 )hN R h hp  

R = number of resels

h = threshold 

Set h such that 𝐸[𝑁ℎ] = 0.05

Example: For 100 resels, 𝐸[𝑁ℎ] = 0.049 for a Z 

threshold of 3.8. That is, the probability of 

getting one or more blobs where Z is greater 

than 3.8, is 0.049.

ℎ
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Spatial extent: similar



Voxel, cluster and set level tests
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ROI Voxel Field
‘volume’ ↑
resolution*↑

volume ↑
independence↑

FWE FDR

*voxels/volume

Height Extent

ROI Voxel Field

Height Extent

There is a multiple testing problem (‘voxel’ or ‘blob’ perspective).

More corrections needed as ..

Detect an effect of unknown extent & location

Volume ↑, Independence↑
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