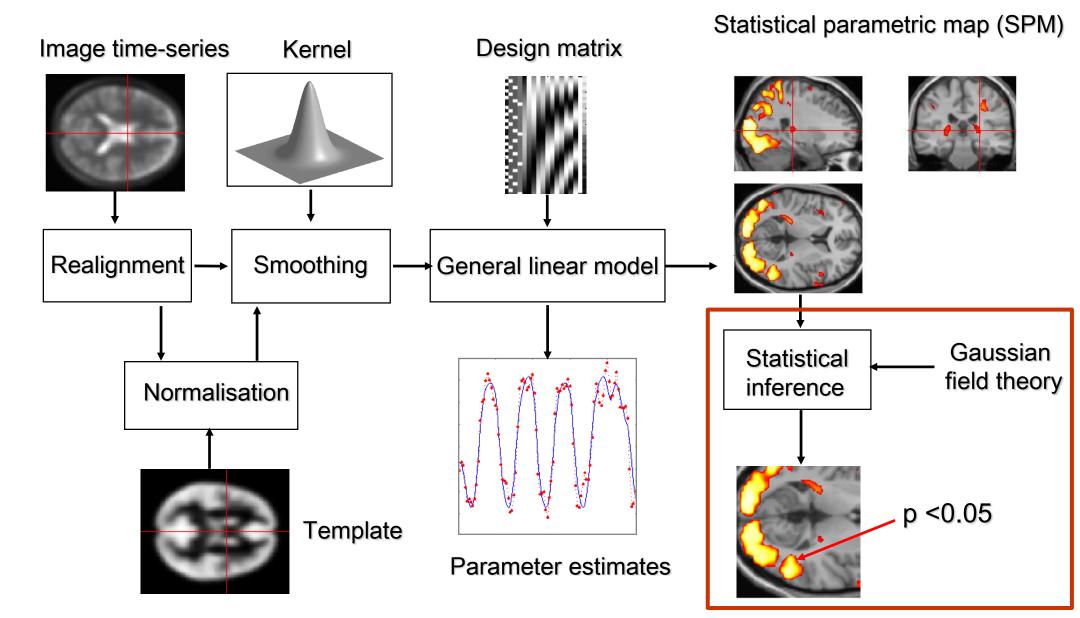
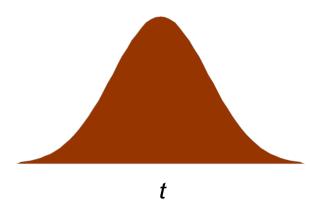
Multiple testing

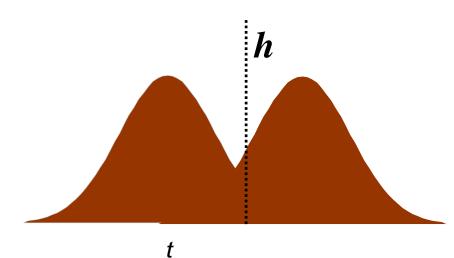

Justin Chumbley


Laboratory for Social and Neural Systems Research University of Zurich

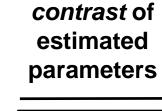
With many thanks for slides & images to:

FIL Methods group

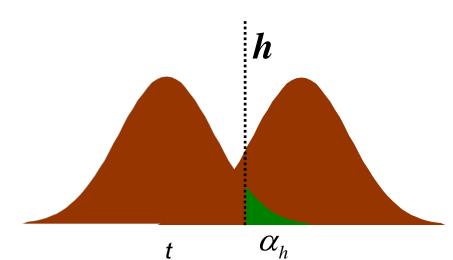
Overview of SPM – Random field theory


contrast of estimated parameters

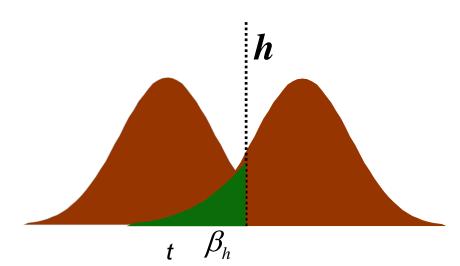
t =



contrast of estimated parameters

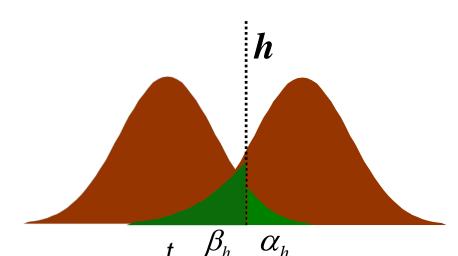

t =

Decision: H_0 , H_1 : zero/non-zero activation



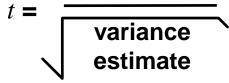
t =

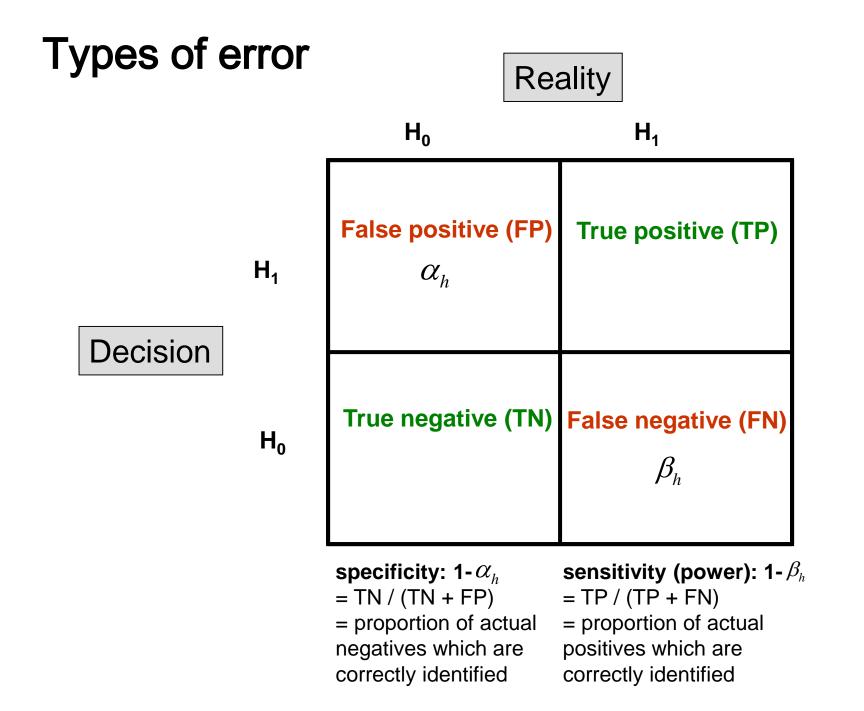
Decision: H_0 , H_1 : zero/non-zero activation


contrast of estimated parameters *t* =

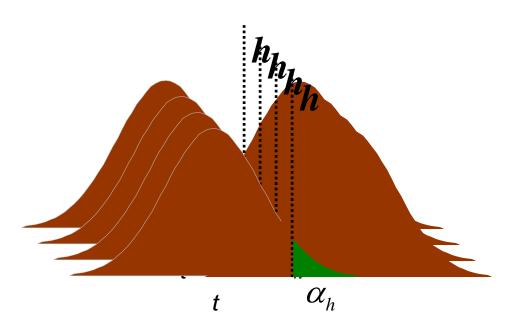
Decision: H_0 , H_1 : zero/non-zero activation

contrast of estimated parameters


t =

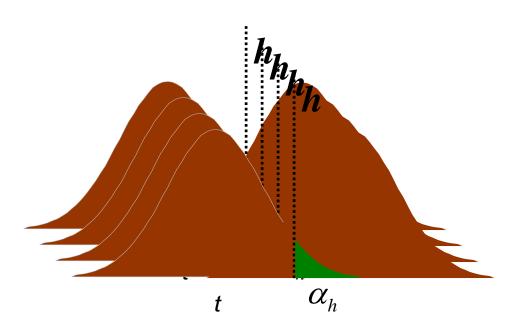

Decision: H_0 , H_1 : zero/non-zero activation

Decision rule (threshold) *h*, determines related error rates α_h , β_h


contrast of estimated parameters

Convention: Penalize complexity Choose *h* to give acceptable α_h under H₀

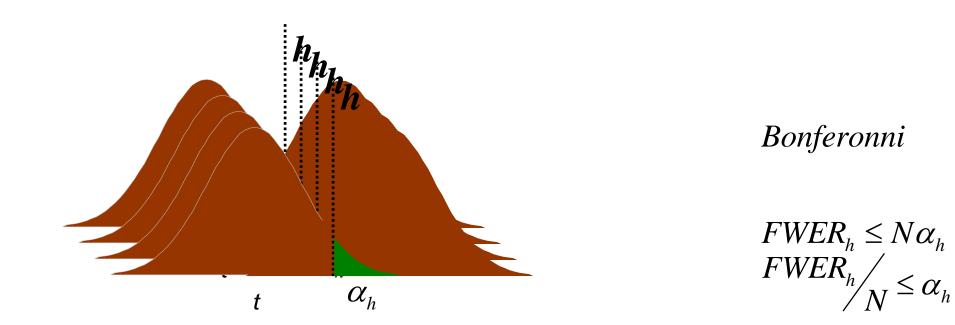
Multiple tests

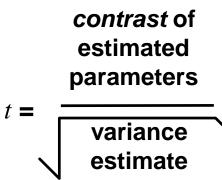


What is the problem?

t =

Multiple tests

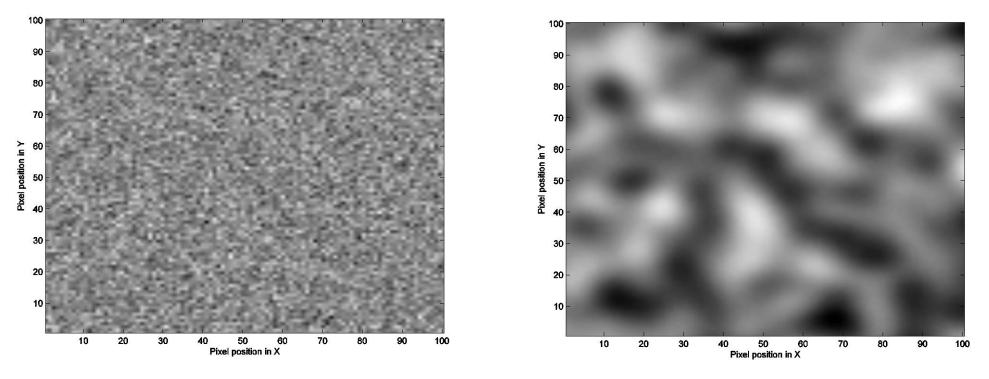

Penalize each independent opportunity for error.


 $p(1 \text{ or more } FP) = FWER_h$ $E(\frac{FP}{All \text{ positives}}) = FDR$

contrast of estimated parameters

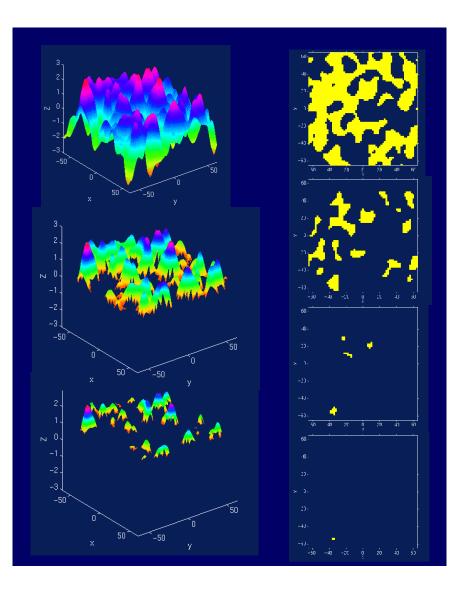
t =

Multiple tests

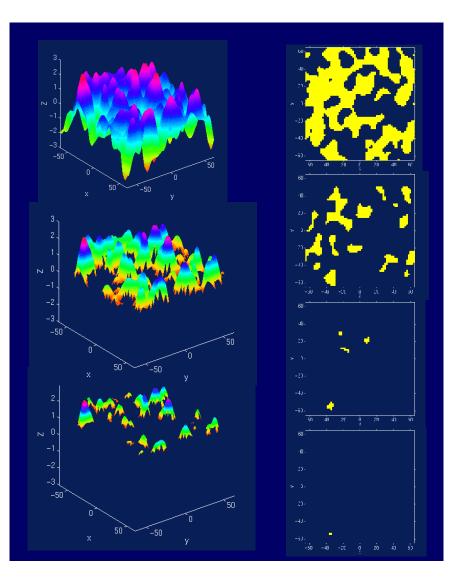


Convention: Choose *h* to limit $FWER_h$ assuming family-wise H₀

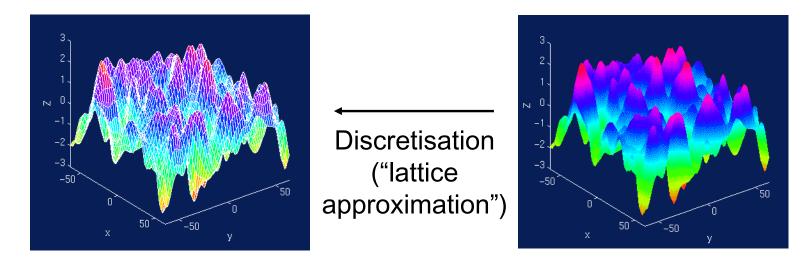
Issues


- 1. Voxels or regions
- 2. Bonferroni too harsh (insensitive)
 - Unnecessary penalty for sampling resolution (#voxels/volume)
 - Unnecessary penalty for independence

- intrinsic smoothness
 - MRI signals are aquired in k-space (Fourier space); after projection on anatomical space, signals have continuous support
 - diffusion of vasodilatory molecules has extended spatial support
- extrinsic smoothness
 - resampling during preprocessing
 - matched filter theorem
 - \rightarrow deliberate additional smoothing to increase SNR
 - Robustness to between-subject anatomical differences


Acknowledge/estimate dependence Detect effects in smooth landscape, not voxels

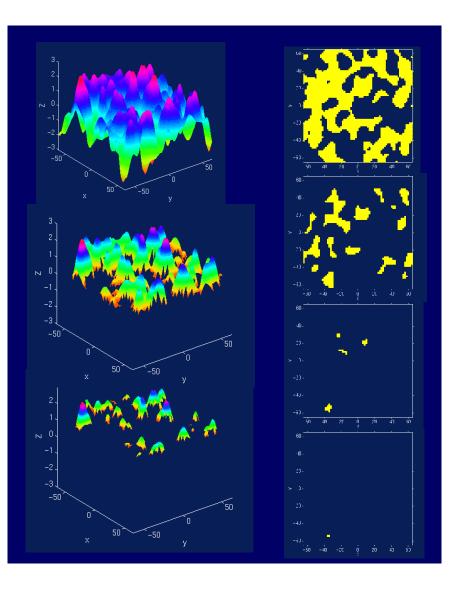
- Apply high threshold: identify improbably high peaks
- 2. Apply lower threshold: identify improbably broad peaks
- 3. Total number of regions?


Null distribution?

- 1. Simulate null experiments
- 2. Model null experiments

Use continuous random field theory

• image \approx discretised continuous random field


Smoothness quantified: resolution elements ('resels')

- similar, but not identical to # independent observations
- computed from spatial derivatives of the residuals

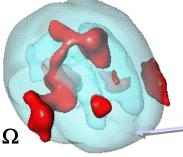
Euler characteristic

- threshold an image at high h# blobs = N_h

FWER $\approx E[N_h]$ = p (blob)

Unified Formula

- General form for expected Euler characteristic
 - χ², *F*, & *t* fields


$$\mathsf{E}[N_h(\Omega)] = \sum_d \mathsf{R}_d(\Omega) \,\rho_d(h)$$

Small volumes: Anatomical atlas, 'functional localisers', orthogonal contrasts, volume around previously reported coordinates...

$\mathbf{R}_d(\Omega)$: *d*-dimensional Minkowski functional of Ω

-function of dimension, space Ω and smoothness:

- $\mathbf{R}_0(\Omega) = N(\Omega)$ Euler characteristic of Ω
- $\mathbf{R}_1(\Omega) = \mathbf{resel\ diameter}$
- $\mathbf{R}_2(\Omega) =$ resel surface area
- $\mathbf{R}_{3}(\Omega) = \text{resel volume}$

$\rho_d(\Omega)$: *d*-dimensional EC density of $Z(\underline{x})$

-function of dimension and threshold, specific for RF type:

E.g. Gaussian RF:

Ω

 $\rho_0(h) = 1 - \Phi(h)$

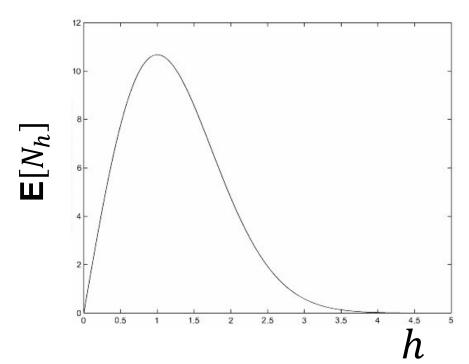
 $\rho_1(h) = (4 \ln 2)^{1/2} \exp(-h^2/2) / (2\pi)$

 $\rho_2(h) = (4 \ln 2) \exp(-h^2/2) / (2\pi)^{3/2}$

 $\rho_3(h) = (4 \ln 2)^{3/2} (h^2 - 1) \exp(-h^2/2) / (2\pi)^2$

 $\rho_4(h) = (4 \ln 2)^2 (h^3 - 3h) \exp(-h^2/2) / (2\pi)^{5/2}$

Euler characteristic (EC) for 2D images


$$E[N_h] = R(4\log 2)(2\pi)^{-3/2}h\exp(-0.5h^2)$$

R = number of resels

h = threshold

Set *h* such that $E[N_h] = 0.05$

Example: For 100 resels, $E[N_h] = 0.049$ for a Z threshold of 3.8. That is, the probability of getting one or more blobs where Z is greater than 3.8, is 0.049.

Spatial extent: similar

Voxel, cluster and set level tests

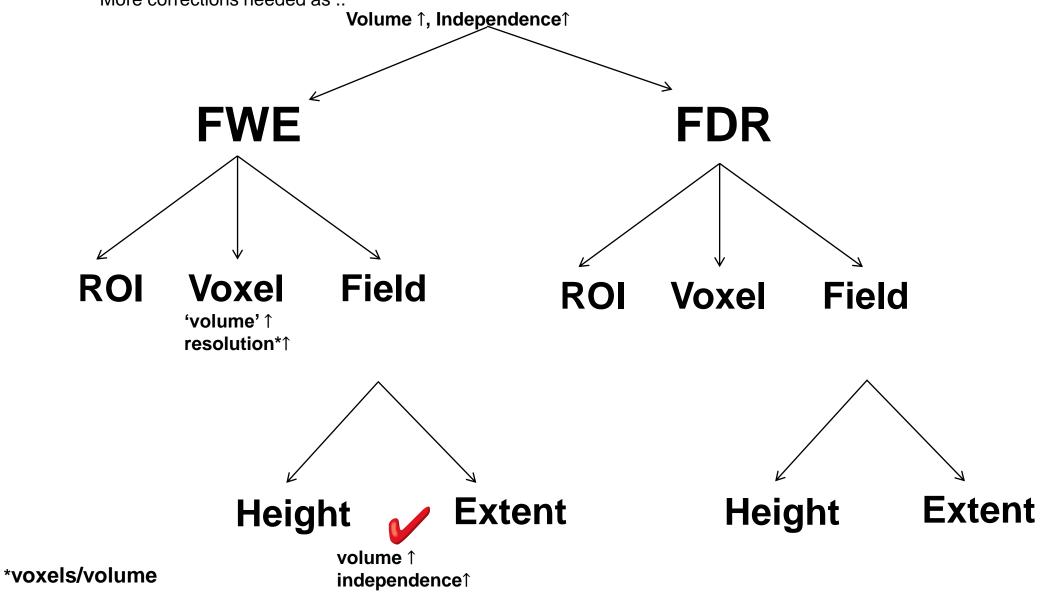
SPM intensity

u

h

set-level		cluster-level				peak-level					mm n	nn I	-
ρ	C	$p_{\rm FWE-com}$	Q _{FDR-optr}	Η _Ε	ρ_{uncorr}	$\rho_{\rm FOE-com}$.⊈ FDR∙cor	r T	(Z_)	$P_{\rm uncom}$			
0.000	16	0.000	0.000	138	0.000	0.000	0.000	11.04	7.64	0.000	-34 -	-70	-28
						0.0DD	0.009	7.31	5.9D	D.000	-44 -	-74	-24
		0.000	0.000	452	0.000	0.000	0.000	9.82	7.14	0.000	6	16	4.0
		0.000	0.000	300	0.000	0.000	0.000	9.14	6.84	0.000	44	16	0
						0.041	0.833	5.29	4.64	D.000	38	12	16
		0.000	0.000	173	0.000	0.000	0.009	7.39	5.95	0.000	44 -	-58	-28
						0.000	0.009	7.35	5.93	0.000	52 -	-58	-20
						0,002	0.087	6.4Z	5.3B	D.000	50 -	-66	-24
		0.000	0.000	112	0.000	0.000	0.025	6.93	5.69	0.000	-2 -	-66	-24
						0.012	0.418	5.73	4.94	0.000	4 -	-78	-24
						0.014	0.47Z	5.65	4.89	D.000	Ζ-	-86	-28
		0.013	0.374	3	0.257	0.010	0.406	5.77	4.97	0.000	-52	20	4
		0.000	0.019	20	800.0	0.011	0.006	5.76	4.96	0.000	10 -	-10	8
		0.008	0.263	5	0.148	0.016	0.472	5.63	4.87	0.000		-16	12
		0.000	0.012	24	0.004	0.016	0.472	5.61	4.86	0.000	44	4	28
						0.035	0.736	5.34	4.68	D.000	46	6	20
		0.006	0.231	6	0.116	0.018	0.472	5.59	4.84	0.000		-48	
		0.026	0.520	1	0.520	0.021	0.538	5.52	4.80	0.000		-54	
		0.026	0.520	1	0.520	0.030	0.713	5.40	4.72	0.000	6 -		

Statistics: p-values adjusted for search volume


fable shows 3 local maxima more than 8.0mm apart.

Height threshold: $T = 5.21$, $p = 0.000$ (0.050)	Degrees of freedom = [1.0, 45.0]
Extent threshold: k = 0 voxels, p = 1.000 (0.050)	FWHM = 9.8 10.6 15.6 mm mm mm; 4.9 5.3 3.9 {voxels}
Expected voxels per cluster, $<$ k $>$ = 2.519	Volume: B80432 = 55027 voxels = 472.2 resels
Expected number of clusters, $\langle c \rangle = 0.05$	- Voxel size: 2.0-2.0-4.0 mm mm mm; (resel = 102.26 voxels)
FWEp: 5.213, FDRp: 6.702, FWEc: 1, FDRc: 20	Page 1

Detect an effect of unknown extent & location

There is a multiple testing problem ('voxel' or 'blob' perspective).

More corrections needed as ..

Further reading

- Friston KJ, Frith CD, Liddle PF, Frackowiak RS. Comparing functional (PET) images: the assessment of significant change. J Cereb Blood Flow Metab. 1991 Jul;11(4):690-9.
- Genovese CR, Lazar NA, Nichols T. Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage. 2002 Apr;15(4):870-8.
- Worsley KJ Marrett S Neelin P Vandal AC Friston KJ Evans AC. A unified statistical approach for determining significant signals in images of cerebral activation. Human Brain Mapping 1996;4:58-73.