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Degree of plausibility desiderata: 

 should be represented using real numbers  (D1) 

 should conform with intuition   (D2) 

 should be consistent    (D3) 

a=2 
b=5 

a=2 

→ normalization: 

→ marginalization: 

→ conditioning : 

(Bayes rule) 

Introduction: Bayesian inference 
probability theory: basics 



Introduction: Bayesian inference 
deriving the likelihood function 

- Model of data with unknown parameters: 

 y f  e.g., GLM:  f X 

- But data is noisy:  y f   

- Assume noise/residuals is ‘small’: 
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→ Distribution of data, given fixed parameters: 
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Likelihood: 

Prior: 

Bayes rule: 

Introduction: Bayesian inference 
likelihood, priors and Bayes’ rule 
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Principle of parsimony : 

« plurality should not be assumed without necessity »  
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“Occam’s razor” : 
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space of all data sets 

Model evidence: 

Bayesian model comparison 
model evidence 



Bayesian model selection 
VB and the Free Energy 

→ VB :  maximize the free energy F(q) w.r.t. the approximate posterior q(θ)  

 under some (e.g., mean field, Laplace) simplifying constraint 
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Bayesian model selection 
Laplace approximation and BIC 
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→ Laplace approximation 

→ BIC: Laplace approximation at the asymptotic limit 

 Laplace

BIC
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• estimate parameters (obtain test stat.) 

  
H

0
:  0• define the null, e.g.:  

• apply decision rule, i.e.: 

classical (null) hypothesis testing 

• define two alternative models, e.g.: 

• apply decision rule, e.g.: 

Bayesian model comparison 

Bayesian model comparison 
a (quick) note on hypothesis testing 
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Bayesian model comparison 
Family-level inference 
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model selection error risk: 
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model selection error risk: 

P(f2|y) = 0.95 P(f1|y) = 0.05 

   1 1 max

0.05

f
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family inference 

(pool statistical evidence) 
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Bayesian model comparison 
Family-level inference 
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Group-level model selection 
FFX-BMS analysis 

→ FFX-BMS: all subjects are best described by a unique (unknown) model 
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 FFX-BMS still assumes that model parameters are different across subjects! 

 FFX-BMS is not invalid, but main assumption has to be justifiable. 

 What if different subjects are best described by different models? → RFX-BMS 



Group-level model selection 
RFX-BMS: preliminary (Polya’s urn) 
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→ ith marble is blue 

→ ith marble is purple 

Thus, our belief about the proportion of blue marbles is: 
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r = proportion of blue marbles in the urn 

→ (binomial) probability of drawing a set of n marbles:  
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Group-level model selection 
RFX-BMS: the group null 

 

 H1: “reasonable” prior assumption = [the urn is unbiased] 
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Exceedance probability:  ' 1,k k k kP r r m H  

 

 H0: “null” prior assumption = [all frequencies are equal] 
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 Bayesian “omnibus risk”:  
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Protected exceedance probability:  0 01k kP P K   



Group-level model selection 
RFX-BMS: what if we are colour blind? 

At least, we can measure how likely is the ith subject’s data under each model! 
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Our belief about the proportion of models is: 

Exceedance probability:  'k k k kP r r y  
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Group-level model selection 
RFX-BMS: protecting from DCM overconfidence 



Group-level model selection 
frequentist versus Bayesian RFX analyses 
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 within-subject design: n subjects in 2 conditions 

 → statistical evidence for a difference between conditions? 

Group-level model selection 
RFX-BMS: between-condition comparison 
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 compare 2 different hypotheses (at the group level): 

     : same model across conditions 

     : different models across conditions 
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 between-subject design: 2 groups of n subjects each 

 → statistical evidence for a difference between groups? 

Group-level model selection 
RFX-BMS: between-group comparison 

 compare 2 different hypotheses (at the group level): 

     : different groups come from the same population 

     : different groups come from different populations 
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I thank you for your attention. 



A note on statistical significance 
lessons from the Neyman-Pearson lemma 

• Neyman-Pearson lemma: the likelihood ratio (or Bayes factor) test 

 
 

1

0

p y H
u

p y H
  

is the most powerful test of size              to test the null.   0p u H   

MVB (Bayes factor)  

u=1.09, power=56% 

CCA (F-statistics) 

F=2.20, power=20% 

error I rate 
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ROC analysis 

• what is the threshold u, above which the Bayes factor test yields a error I rate of 5%? 


