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GLM: repeat over subjects

fMRI data Design Matrix Contrast Images SPM{t}
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First level analyses (p<0.05 FWE):

Data from R. Henson



Fixed effects analysis (FFX)

Subject 1
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Subject 3

Subject N

…
Modelling all 

subjects at once

 Simple model

 Lots of degrees of 

freedom

 Large amount of 

data

 Assumes common 

variance over 

subjects at each 

voxel



Fixed effects analysis (FFX)
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Only one source of random variation (over sessions):

 measurement error

 True response magnitude is fixed.
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Fixed effects

Within-subject Variance
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Random effects

Within-subject Variance

Between-subject Variance

 Two sources of random variation:

 measurement errors

 response magnitude (over subjects)

 Response magnitude is random

 each subject/session has random magnitude



 Two sources of random variation:

 measurement errors

 response magnitude (over subjects)

 Response magnitude is random

 each subject/session has random magnitude

but population mean magnitude is fixed.
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Probability model underlying random effects analysis

Random effects
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With Fixed Effects Analysis (FFX) we compare

the group effect to the within-subject variability. It is

not an inference about the population from which

the subjects were drawn.

With Random Effects Analysis (RFX) we compare

the group effect to the between-subject variability. It

is an inference about the population from which the

subjects were drawn. If you had a new subject from

that population, you could be confident they would

also show the effect.

Fixed vs random effects



 Fixed isn’t “wrong”, just usually isn’t of interest.

 Summary:

 Fixed effects inference:

“I can see this effect in this cohort”

 Random effects inference:

“If I were to sample a new cohort from the same

population I would get the same result”

Fixed vs random effects



Terminology

Hierarchical linear models:

 Random effects models

 Mixed effects models

 Nested models

 Variance components models

… all the same

… all alluding to multiple sources of variation

(in contrast to fixed effects)
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Hierarchical models

 Restricted Maximum Likelihood (ReML)

 Parametric Empirical Bayes

 Expectation-Maximisation Algorithm

spm_mfx.m

But:

 Many two level models 

are just too big to 

compute.

 And even if, it takes a 

long time!

 Any approximation?

Mixed-effects and fMRI studies. Friston et al., NeuroImage, 2005.



Summary Statistics RFX Approach

Contrast ImagesfMRI data Design Matrix
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Generalisability, Random Effects & Population 
Inference. Holmes & Friston, NeuroImage,1998.

Second level

One-sample t-test @ second level
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Summary Statistics RFX Approach

Assumptions

The summary statistics approach is exact if for 

each session/subject:

 Within-subjects variances the same

 First level design the same (e.g. number of trials)

 Other cases: summary statistics approach is 

robust against typical violations.

Simple group fMRI modeling and inference. Mumford & Nichols. NeuroImage, 2009.

Mixed-effects and fMRI studies. Friston et al., NeuroImage, 2005.

Statistical Parametric Mapping: The Analysis of Functional Brain Images. Elsevier, 2007.



Summary Statistics RFX Approach

Robustness

Summary

statistics

Hierarchical

Model

Mixed-effects and fMRI studies. Friston et al., NeuroImage, 2005.

Listening to words Viewing faces



ANOVA & non-sphericity

 One effect per subject:

 Summary statistics approach

 One-sample t-test at the second level

 More than one effect per subject or 

multiple groups:

 Non-sphericity modelling

 Covariance components and ReML



GLM assumes Gaussian “spherical” (i.i.d.) errors

sphericity = iid:

error covariance is 

scalar multiple of 

identity matrix:

Cov(e) = 2I
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Examples for non-sphericity:

non-identically

distributed

non-independent



Errors are independent 

but not identical

(e.g. different groups (patients, controls))

Errors are not independent 

and not identical

(e.g. repeated measures for each subject 

(multiple basis functions, multiple 

conditions, etc.))

2nd level: Non-sphericity
Error covariance matrix



2nd level: Variance components

Error covariance matrix

Qk’s:

Qk’s:

Cov(𝜀) = 
𝑘

𝜆𝑘𝑄𝑘



 Stimuli:

 Auditory presentation (SOA = 4 sec)

 250 scans per subject, block design

 2 conditions

• Words, e.g. “book”

• Words spoken backwards, e.g. “koob”

 Subjects:

12 controls

11 blind people

Example 1: between-subjects ANOVA

Data from Noppeney et al.



Error covariance matrix

 Two-sample t-test:

 Errors are independent

but not identical.

 2 covariance components

Qk’s:

Example 1: Covariance components
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Example 2: within-subjects ANOVA

 Stimuli:

 Auditory presentation (SOA = 4 sec)

 250 scans per subject, block design

 Words:

 Subjects:

 12 controls

 Question:

 What regions are generally affected by the 

semantic content of the words?

“turn”“pink”“click”“jump”

ActionVisualSoundMotion

Noppeney et al., Brain, 2003.



Example 2: Covariance components

Errors are not independent

and not identical

Qk’s:

Error covariance matrix



Example 2: Repeated measures ANOVA
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ANCOVA model

Mean centering continuous covariates for a group fMRI analysis, by J. Mumford:

http://mumford.fmripower.org/mean_centering/



Analysis mask: logical AND
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SPM interface: factorial design specification

 Many options…

 One-sample t-test

 Two-sample t-test

 Paired t-test

 Multiple regression

 One-way ANOVA

 One-way ANOVA – within subject

 Full factorial

 Flexible factorial
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Model is specified by

1. Design matrix X

2. Assumptions about 

General Linear Model

𝑦 = 𝑋𝛽 + 𝜀

𝜀 ∼ 𝑁(0, 𝜎2𝐶𝜀)

𝐶𝜀 = 

𝑘

𝜆𝑘𝑄𝑘

𝒚 = 𝑿𝛽 + 𝜀

𝐶𝜀 = 

𝑘

𝜆𝑘𝑸𝒌



One-sample t-test Two-sample t-test Paired t-test One-way ANOVA

One-way ANOVA 

within-subject
Full Factorial Flexible Factorial Flexible Factorial



Summary

 Group Inference usually proceeds with RFX analysis, not 

FFX. Group effects are compared to between rather than 

within subject variability. 

 Hierarchical models provide a gold-standard for RFX 

analysis but are computationally intensive.

 Summary statistics approach is a robust method for RFX 

group analysis.

 Can also use ‘ANOVA’ or ‘ANOVA within subject’ at 

second level for inference about multiple experimental 

conditions or multiple groups.
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