Classical inference and design efficiency

Zurich SPM Course 2015

Jakob Heinzle heinzle@biomed.ee.ethz.ch

Translational Neuromodeling Unit (TNU) Institute for Biomedical Engineering (IBT) University and ETH Zürich

Many thanks to K. E. Stephan, G. Flandin and others for material

> **ETH** Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

T-test

What are the values we want to make inference on? Brief repetition of GLM

S

A mass-univariate approach

Classical Inference and Design Efficiency | 4

Estimation of the parameters

Distribution of parameter estimates

S

T-test

How can I test whether a (combination of) regressor has a significant effect for explaining the data?

S

Contrasts

□ A contrast selects a specific effect of interest.

- \Rightarrow A contrast *c* is a vector of length *p*.
- $\Rightarrow c^T \beta$ is a linear combination of regression coefficients β .
- $c = [1 \ 0 \ 0 \ 0 \ ...]^T$
- $c^{T}\beta = \mathbf{1} \times \beta_{1} + \mathbf{0} \times \beta_{2} + \mathbf{0} \times \beta_{3} + \mathbf{0} \times \beta_{4} + \cdots$ $= \beta_{1}$ $c = [1 \ 0 \ 0 \ -1 \ 0 \ \dots]^{T}$ $c^{T}\beta = \mathbf{1} \times \beta_{1} + \mathbf{0} \times \beta_{2} + \mathbf{0} \times \beta_{3} + -\mathbf{1} \times \beta_{4} + \cdots$ $= \beta_{1} \beta_{4}$

 $c^T \hat{\beta} \sim N(c^T \beta, \sigma^2 c^T (X^T X)^{-1} c)$

Classical Inference and Design Efficiency 8

Hypothesis Testing - Introduction

Is the mean of a measurement different from zero?

S

Hypothesis Testing

To test an hypothesis, we construct "test statistics".

□ Null Hypothesis H₀

Typically what we want to disprove (no effect).

 \Rightarrow The Alternative Hypothesis H_A expresses outcome of interest.

Test Statistic T

The test statistic summarises evidence about H_0 .

Typically, test statistic is small in magnitude when the hypothesis H_0 is true and large when false.

 \Rightarrow We need to know the distribution of T under the null hypothesis.

Hypothesis Testing

Ω Significance level α:

Acceptable false positive rate α .

 \Rightarrow threshold u_{α}

Threshold u_{α} controls the false positive rate

 $\alpha = p(T > u_{\alpha} \mid H_0)$

Conclusion about the hypothesis:

We reject the null hypothesis in favour of the alternative hypothesis if $t > u_{\alpha}$

□ p-value:

A *p*-value summarises evidence against H_0 .

This is the chance of observing a value more extreme than *t* under the null hypothesis.

 $p(T > t | H_0)$

Null Distribution of T

T-test - one dimensional contrasts – SPM{t}

T-contrast in SPM

□ For a given contrast *c*:

T-test: a simple example

S

T-test: summary

T-test is a *signal-to-noise* measure (ratio of estimate to standard deviation of estimate).

□ Alternative hypothesis:

$$H_0: c^T \beta = 0 \quad vs \quad H_A: c^T \beta > 0$$

□ *T*-contrasts are simple combinations of the betas; the T-statistic does not depend on the scaling of the regressors or the scaling of the contrast.

Scaling issue

$$T = \frac{c^T \hat{\beta}}{\sqrt{\operatorname{var}(c^T \hat{\beta})}} = \frac{c}{\sqrt{\hat{\sigma} c} (X^T X)^{-1} c}$$

The *T*-statistic does not depend on the scaling of the regressors.

- □ The *T*-statistic does not depend on the scaling of the contrast.
- \Box Contrast $c^T \hat{\beta}$ depends on scaling.
- > Be careful of the interpretation of the contrasts $c^T \hat{\beta}$ themselves (eg, for a second level analysis):

sum ≠ average

Scaling issues – a x c

$$T = \frac{c^T \hat{\beta}}{\sqrt{\operatorname{var}(c^T \hat{\beta})}} = \frac{c^T \hat{\beta}}{\sqrt{\hat{\sigma}^2 c^T (X^T X)^{-1} c}}$$

$$T_a = \frac{ac^T \hat{\beta}}{\sqrt{\operatorname{var}(ac^T \hat{\beta})}} = \frac{ac^T \hat{\beta}}{\sqrt{\hat{\sigma}^2 ac^T (X^T X)^{-1} ac}} = \frac{c^T \hat{\beta}}{\sqrt{\hat{\sigma}^2 c^T (X^T X)^{-1} c}} = T$$

Multiplying the contrast with a scalar does not change the t-value?

S

Scaling issues – b x X

$$T_{b} = \frac{c^{T} \hat{\beta}_{b}}{\sqrt{\operatorname{var}(c^{T} \hat{\beta}_{b})}} = \frac{c^{T} \hat{\beta}_{b}}{\sqrt{\hat{\sigma}^{2} c^{T} (b X^{T} b X)^{-1} c}}$$
$$\widehat{\beta}_{b} = (b X^{T} b X)^{-1} b X^{T} y = \hat{\beta} / b$$
$$T_{b} = \frac{c^{T} \hat{\beta} / b}{b^{-1} \sqrt{\hat{\sigma}^{2} c^{T} (X^{T} X)^{-1} c}} = T$$
Multiplying the design matrix with a scalar does not change the t-value?

Classical Inference and Design Efficiency | 18

F-Test

How can I test whether (parts of) my design matrix explain any variation at all?

F-test - the extra-sum-of-squares principle

Model comparison:

F-test - multidimensional contrasts - SPM{F}

Test multiple linear hypotheses:

F-contrast in SPM

S

F-test example: movement related effects

F-test: summary

F-tests can be viewed as testing for the additional variance explained by a larger model wrt a simpler (*nested*) model ⇒ model comparison.

- □ F tests a weighted **sum of squares** of one or several combinations of the regression coefficients β .
- \Box In practice, we don't have to explicitly separate X into [X₁X₂] thanks to multidimensional contrasts.
- □ Hypotheses:

 - 0 0 0 0
 - $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$ Null Hypothesis $H_0: \beta_1 = \beta_2 = \beta_3 = 0$ Alternative Hypothesis $H_4:$ at least one β_4 Alternative Hypothesis H_A : at least one $\beta_k \neq 0$
- □ In testing uni-dimensional contrast with an *F*-test, for example $\beta_1 - \beta_2$, the result will be the same as testing $\beta_2 - \beta_1$. It will be exactly the square of the *t*-test, testing for both positive and negative effects.

Orthogonal regressors

What's (not) the problem if I use a design with correlated regressors?

Orthogonal regressors

S

Classical Inference and Design Efficiency | 27

Classical Inference and Design Efficiency 28

Classical Inference and Design Efficiency 29

Classical Inference and Design Efficiency | 30

S

S

S

Design orthogonality

Measure : abs. value of cosine of angle between columns of design matrix Scale : black - colinear (cos=+1/-1) white - orthogonal (cos=0) gray - not orthogonal or colinear For each pair of columns of the design matrix, the orthogonality matrix depicts the magnitude of the **cosine of the angle** between them, with the range 0 to 1 mapped from white to black.

If both vectors have zero mean then the cosine of the angle between the vectors is the same as the correlation between the two variates.

Correlated regressors: summary

- We implicitly test for an **additional** effect only. When testing for the first regressor, we are effectively removing the part of the signal that can be accounted for by the second regressor:
 - ⇒ implicit orthogonalisation.

 Orthogonalisation = decorrelation. Parameters and test on the non modified regressor change.

Rarely solves the problem as it requires assumptions about which regressor to uniquely attribute the common variance.

 \Rightarrow change regressors (i.e. design) instead, e.g. factorial designs.

 \Rightarrow use F-tests to assess overall significance.

 Original regressors may not matter: it's the contrast you are testing which should be as decorrelated as possible from the rest of the design matrix

Design efficiency

How can I make my experimental design as good (powerful) as possible?

S

Design efficiency

□ The aim is to minimize the standard error of a *t*-contrast (i.e. the denominator of a t-statistic).

$$T = \frac{c^T \hat{\beta}}{\sqrt{\operatorname{var}(c^T \hat{\beta})}}$$

□ This is equivalent to maximizing the efficiency e:

$$e(\hat{\sigma}^2, c, X) = \hat{\sigma}^2 c^T (X^T X)^{-1} c)^{-1}$$

Noise variance Design variance

□ If we assume that the noise variance is independent of the specific design:

 $\operatorname{var}(c^{T}\hat{\beta}) = \hat{\sigma}^{2}c^{T}(X^{T}X)^{-1}c$

$$e(c, X) = (c^T (X^T X)^{-1} c)^{-1}$$

This is a relative measure: all we can really say is that one design is more efficient than another (for a given contrast).

Bibliography:

Statistical Parametric Mapping: The Analysis of Functional Brain Images. Elsevier, 2007.

- □ Plane Answers to Complex Questions: The Theory of Linear Models. R. Christensen, Springer, 1996.
- □ Statistical parametric maps in functional imaging: a general linear approach. K.J. Friston et al, Human Brain Mapping, 1995.
- □ Ambiguous results in functional neuroimaging data analysis due to covariate correlation. A. Andrade et al., NeuroImage, 1999.
- □ Estimating efficiency a priori: a comparison of blocked and randomized designs. A. Mechelli et al., NeuroImage, 2003.

Classical Inference and Design Efficiency 39

Statistical Parametric Mapping

The Analy