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T-test
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What are the values we want
to make inference on?
Brief repetition of GLM



A mass-univariate approach
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Estimation of the parameters

ݕ = ߝ+
ߚ

(ܫଶߪ,0)ܰ~ߝ

መߚ = (்ܺܺ)ିଵ்ܺݕ

i.i.d. assumptions:

OLS estimates:

መߚଵ = 3.9831

መߚଶି଻ = {0.6871, 1.9598, 1.3902, 166.1007, 76.4770,െ64.8189}

መ଼ߚ = 131.0040

Ƹߝ=
ොߪଶ = ොఌ೅ොఌ

ேି௣መߚ~ܰ ଶ(்ܺܺ)ିଵߪ,ߚ
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Distribution of parameter estimates

ݕ = ߝ+
ߚ

(ܫଶߪ,0)ܰ~ߝ

መߚ = (்ܺܺ)ିଵ்ܺݕ

i.i.d. assumptions:

OLS estimates:

መߚଵ = 3.9831

መߚଶି଻ = {0.6871, 1.9598, 1.3902, 166.1007, 76.4770,െ64.8189}

መ଼ߚ = 131.0040

Ƹߝ=
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ොߪଶ = ොఌ೅ොఌ
ேି௣

መߚ~ܰ ଶ(்ܺܺ)ିଵߪ,ߚ



T-test
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How can I test whether 
a (combination of) regressor

has a significant effect 
for explaining the data?



Contrasts
� A contrast selects a specific effect of interest.

Ö A contrast ܿ is a vector of length ݌.

Ö ߚ்ܿ is a linear combination of regression 
coefficients ߚ.

ܿ = [1 0 0 0 … ]்

ߚ்ܿ = ૚ × ଵߚ + ૙ × ଶߚ + ૙ × ଷߚ + ૙ × ସߚ ڮ+
= ૚ࢼ

ܿ = [1 0 0 െ 1 0 … ]்

ߚ்ܿ = ૚ × ଵߚ + ૙ × ଶߚ + ૙ × ଷߚ +െ૚ × ସߚ ڮ+
= ૚ࢼ െ ૝ࢼ

[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

்ܿ መߚ~ܰ ଶ்ܿ(்ܺܺ)ିଵܿߪ,ߚ்ܿ
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[1 0 0-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]



Hypothesis Testing - Introduction

Is the mean of a measurement different from zero?
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Mean of several
measurements

Many experiments

ܶ =
ߤ
ൗߪ ݊

Ratio of
effect vs. noise
Æ t-statistic N

ull D
istribution of T

Null distribution

What distribution of T 
would we

get for P = 0?
ఓߪ = ൗ

ଵ,ଶߪ
݊

0

P���V�

Exp A
P�� V�

Exp B



Hypothesis Testing

� Null Hypothesis H0

Typically what we want to disprove (no effect).

Ö The Alternative Hypothesis HA expresses outcome of interest.

To test an hypothesis, we construct “test statistics”.

� Test Statistic T
The test statistic summarises evidence 
about H0.
Typically, test statistic is small in 
magnitude when the hypothesis H0 is true 
and large when false. 
ÖWe need to know the distribution of T 
under the null hypothesis. Null Distribution of T
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Hypothesis Testing

� p-value:
A p-value summarises evidence against H0.
This is the chance of observing a value more 
extreme than t under the null hypothesis.

Null Distribution of T

� Significance level Į:
Acceptable false positive rate Į.

Ö threshold uĮ

Threshold uĮ controls the false positive rate 

t

p-value  

Null Distribution of T

D

uD

� Conclusion about the hypothesis:
We reject the null hypothesis in favour of the 
alternative hypothesis if t > uĮ

)|( 0HuTp DD ! 

݌ ܶ > ଴ܪ|ݐ
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cT = 1 0 0 0 0 0 0 0

T = 

contrast of
estimated

parameters

variance
estimate

effect of interest > 0 ?
=

amplitude > 0 ?
=

E1 = cTE > 0 ?
E1 E2 E3 E4 E5 ...

T-test - one dimensional contrasts – SPM{t}

Question:

Null hypothesis: H0: cTE=0 

Test statistic:

� � pN
TT

T

T

T

t
cXXc

c

c

cT ��
  ~

ˆ

ˆ

)ˆvar(

ˆ
12V

E

E

E
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T-contrast in SPM

con_???? image

ÊTc

ResMS image

pN

T

�
 

HHV
ˆˆˆ 2

spmT_???? image

SPM{t}

� For a given contrast c:

yXXX TT 1)(ˆ � E

beta_???? images
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T-test: a simple example

Q: activation during

listening ?

Null hypothesis: E
1

= 0

� Passive word listening versus rest

SPMresults: Threshold T = 3.2057  {p<0.001}
voxel-level

p uncorrected

T

( Z{) Mm    mm mm
13.94 Inf 0.000 -63 -27  15
12.04 Inf 0.000 -48 -33  12
11.82 Inf 0.000 -66 -21   6
13.72 Inf 0.000 57 -21  12
12.29 Inf 0.000 63 -12  -3
9.89 7.83 0.000 57 -39   6
7.39 6.36 0.000 36 -30 -15
6.84 5.99 0.000 51   0  48
6.36 5.65 0.000 -63 -54  -3

ݐ =
்ܿ መߚ

var ்ܿ መߚ
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T-test: summary

T-test is a signal-to-noise measure (ratio of 
estimate to standard deviation of estimate).

� T-contrasts are simple combinations of the betas; the T-
statistic does not depend on the scaling of the regressors 
or the scaling of the contrast.

H0: 0 ETc vs     HA: 0!ETc
� Alternative hypothesis:
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መߚ = (்ܺܺ)ିଵ்ܺݕ

Scaling issue

The T-statistic does not depend on the 
scaling of the regressors.

� � cXXc

c

c

cT
TT

T

T

T

12ˆ

ˆ

)ˆvar(

ˆ
�

  
V

E

E

E[1      1      1       1         ]

¾ Be careful of the interpretation of the 
contrasts          themselves (eg, for a 
second level analysis):

sum � average

� The T-statistic does not depend on 
the scaling of the contrast.

/ 4

ÊTc

S
ub

je
ct

 1

[1       1      1         ]

S
ub

je
ct

 5

� Contrast          depends on scaling.ÊTc
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Scaling issues – a x c
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� � cXXc

c

c

cT
TT

T

T

T

12ˆ

ˆ

)ˆvar(

ˆ
�

  
V

E

E

E

� � � �
T

cXXc

c

acXXac

ac

ac

acT
TT

T

TT

T

T

T

a     
�� 1212 ˆ

ˆ

ˆ

ˆ

)ˆvar(

ˆ

V

E

V

E

E

E

Multiplying the contrast with a scalar 
does not change the t-value?



Scaling issues – b x X
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� � cbXbXc

c

c

cT
TT

b
T

b
T

b
T

b 12ˆ

ˆ

)ˆvar(

ˆ
�

  
V

E

E

E

෢ܾߚ = (்ܾܾܺܺ)ିଵ்ܾܺݕ = መߚ/ܾ

� �
T

cXXcb

bc
T

TT

T

b   
�� 121 ˆ

/ˆ

V

E

Multiplying the design matrix with a scalar 
does not change the t-value?



F-Test
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How can I test whether 
(parts of) my design matrix
explain any variation at all?



F-test - the extra-sum-of-squares principle

Model comparison:

Full model ? 

X1X0

or Reduced model? 

X0 Test statistic: ratio of 
explained variability and 
unexplained variability (error)

Q1 = rank(X) – rank(X0)
Q2 = N – rank(X)

RSS
¦ 2ˆ fullH

RSS0

¦ 2ˆreducedH
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RSS
RSSRSSF �

v 0

21 ,~ QQF
RSS
ESSF v

Null Hypothesis H0: True model is X0 (reduced model)



F-test - multidimensional contrasts – SPM{F}

Test multiple linear hypotheses:

Full model ? 
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Null Hypothesis H0: E3 = E4 = E5 = E6 = E7 = E8 = 0

X1 (E3-8)X0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

cT =

cTE = 0

Is any of E3-8 not equal 0? 



F-contrast in SPM

ResMS image

pN

T

�
 

HHV
ˆˆˆ 2

spmF_???? images

SPM{F}

ess_???? images

( RSS0 - RSS )

yXXX TT 1)(ˆ � E

beta_???? images
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F-test example: movement related effects

Design matrix

2 4 6 8

10

20

30

40

50

60

70

80

contrast(s)

Design matrix
2 4 6 8

10
20
30
40
50
60
70
80

contrast(s)
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F-test: summary

F-tests can be viewed as testing for the additional variance 
explained by a larger model wrt a simpler (nested) model Ö
model comparison.

»
»
»
»

¼

º

«
«
«
«

¬

ª

0000
0100
0010
0001

� In testing uni-dimensional contrast with an F-test, for example 
E1 – E2, the result will be the same as testing E2 – E1. It will be 
exactly the square of the t-test, testing for both positive and 
negative effects.

� F tests a weighted sum of squares of one or several 
combinations of the regression coefficients E.

� In practice, we don’t have to explicitly separate X into [X1X2] 
thanks to multidimensional contrasts.

� Hypotheses:

0  : Hypothesis Null 3210    EEEH
0 oneleast at   : Hypothesis eAlternativ zkAH E
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Orthogonal regressors
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What’s (not) the problem 
if I use a design with

correlated regressors?



Variability described by ܺଶVariability described by ଵܺ

Orthogonal regressors

Variability in Y
Testing for ଵܺ Testing for ܺଶ
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Correlated regressors

Va
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Variability described by 

Shared variance

Variability in Y
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Correlated regressors
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Variability in Y

Testing for ଵܺ
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Correlated regressors
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Variability in Y

Testing for ܺଶ
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Correlated regressors
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Variability in Y
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Correlated regressors
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Testing for ଵܺ
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Correlated regressors
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Correlated regressors

Va
ria

bi
lit
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ed
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y 
Variability described by 

Variability in Y

Testing for ଵܺ and/or ܺଶ
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Design orthogonality

For each pair of columns of the design 
matrix, the orthogonality matrix depicts 
the magnitude of the cosine of the 
angle between them, with the range 0 to 
1 mapped from white to black.

� If both vectors have zero mean then 
the cosine of the angle between the 
vectors is the same as the correlation
between the two variates.
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Correlated regressors: summary
Ɣ We implicitly test for an additional effect only. When testing for the 

first regressor, we are effectively removing the part of the signal that 
can be accounted for by the second regressor:
Ö implicit orthogonalisation.

Ɣ Orthogonalisation = decorrelation. Parameters and test on the non 
modified regressor change.
Rarely solves the problem as it requires assumptions about which 
regressor to uniquely attribute the common variance.
Ö change regressors (i.e. design) instead, e.g. factorial designs.
Ö use F-tests to assess overall significance.

Ɣ Original regressors may not matter: it’s the contrast you are testing 
which should be as decorrelated as possible from the rest of the 
design matrix 

x1

x2

x1

x2

x1

x2xA

xA

2

1

2xA�= x2 – x1.x2 x1
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Design efficiency

Classical Inference and Design Efficiency 36

How can I make my 
experimental design 

as good (powerful) as possible?



Design efficiency

1122 ))(ˆ(),,ˆ( �� cXXcXce TTVV

)ˆvar(

ˆ

E

E
T

T

c

cT  � The aim is to minimize the standard error of a t-contrast 
(i.e. the denominator of a t-statistic).

cXXcc TTT 12 )(ˆ)ˆvar( � VE

� This is equivalent to maximizing the efficiency e:

Noise variance Design variance

� If we assume that the noise variance is independent of the specific 
design:

11 ))((),( �� cXXcXce TT

� This is a relative measure: all we can really say is that one design is 
more efficient than another (for a given contrast).
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Design efficiency

A B

A+B
A-B

்ܺܺ = 1 െ0.9
െ0.9 1

ܿ = [1 0]்: ݁ ܿ,ܺ = 18.1
ܿ = [0.5 0.5]்: ݁ ܿ,ܺ = 19.0
ܿ = [1 െ 1]்: ݁ ܿ,ܺ = 95.2

� High correlation between regressors leads to 
low sensitivity to each regressor alone.

� We can still estimate efficiently the difference 
between them.
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