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— n Translational

Neuromodeling

fMRI = Acquiring Movies W WU

= .of three-
dimensional Blood

Oxygen-Level
Dependent (BOLD)

contrast images

" typically echo-planar
images (EPI)

Run/Session:
Time Series of

Images
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= n Translational

Neuromodeling

fMRI = Acquiring Movies W WU

" The Localized Time-series 1s

the Fundamental Information

Unit of tMRI

Signal: Fluctuation through
Blood oxygen level dependent
(BOLD) contrast

EOLD signal change (%)

Noise: All other fluctuations

" Run/Session:
Time Series of

Images

scan 1

Lars Kasper Signal, Noise and Preprocessing
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Neuromodeling

fMRI Movie: An example W Ui
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BOLD signal change (%)
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° e n Translational.
fMRI Movie: N R\ s

Subtracting the Mean

® nterest in fluctuations

Lars Kasper Signal, Noise and Preprocessing



° n Translational'
Introducing the Dataset A

(MoAE)

= Mother of All Experiments: Auditory Stimulation

TR 7 seconds
6 TR rest

6 TR binaural stimulation A very simple IMRI experiment

One session "

(1 bi-syllabic word per second)

Passive word
listening
versus rest

response at [62, -28, 10]

2 28 38 23 3 3 3

7 cycles of

* Chapter 28 of SPM manual etenatsismne

Blocks of 6 scans ' . ’” ’°° o 0 “

time {seconds}

with 7 sec TR . . . . . . .

Stimulus function

Question: Is there a change in the BOLD response
between listening and rest?

Lars Kasper
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Neuromodeling

The Goal of Preprocessing W WU

After

Before
BOLD time course in the presence of 10 % noise BOLD time course in the presence of 10 % noise
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Preprocessing
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Sources of Noise in fMRI

Subject Motion

Spatial Preproc

Acquisition Timing
Anatomical Identity
Inter-subject variability

Thermal Noise

Physiological Noise

Temporal Preproc

Spatial Preproc

Spatial Preproc

Spatial Preproc

R ——

= n Translational

Neuromodeling

W S o

Realignment
Slice-Timing
Co-registration
Segmentation

Smoothing

PhysIO Toolbox




The SPM Graphical User W\

Interface (GUI)

[ NON ) <Student Version> : SPM12 (6225): Menu

" Preprocessing

Realign... Slice timing Smooth

Realignment

Coregis... 3 Normali... 3 Segment

Slice-Timing Correction
o
2.
Unified Segmentation &

Normalisation

Smoothing

" Noise Modelling

Physiological Confound
Regressors

Lars Kasper Signal, Noise and Preprocessing



Sources of Noise in fMRI

Subject Motion

Acquisition Timing  EEETolelel =N =T=Teldole

Anatomical Identity

Inter-subject variability
Thermal Noise

Physiological Noise

— n Translational

Neuromodeling

W S o

Realignment
Slice-Timing
Co-registration
Segmentation

Smoothing

PhysIO Toolbox




= n Translational

Neuromodeling

Slice-timing correction (STC)wr Wi

Slices of 1 scan volume are not acquired simultaneously

(60 ms per slice)

Creates shifts of up to 1 volume repetition time (TR), 1.e.

several seconds

Reduces sensitivity for time-locked effects (smaller

correlation)
True 2D Acquisition Same-Timepoint Assumption
. P e T > ks =
) . __/,t/‘ e L P iy

Lars Kasper Signal, Noise and Preprocessing



G [T : m AN
1ce-timing correction W W U

(STC)

Slice-timing correction: All voxel time
series are aligned to acquisition time of »_ ‘
1 slice (e.g. centre slice) e i
Missing data is interpolated via sinc- 3l -M,nr-

interpolation (band-limited signal) i e T

Before or after realignment?

Slices
e
D
s
e
i
—

before: dominant through-slice motion _ il W o

after: dominant within-slice motion at ¢' " -

At all? s e s

2} o ot o o,

block design: for long TR (3s+) & short L et e

blocks (10s) improves estimates > 5 % s 4 s 6 7 8 9 1m0 11
Time [TRs]

event-related: for normal TRs (2s+)

improves estimates > 5 % Sladky et al, Neurolmage 2011

Lars Kasper Signal, Noise and Preprocessing 13



° ° ° ° n Translational'
Slice-timing correction (STC): N ol

Simulation

Slice-timing Temporal-Derivative
Correction Modelling
T =
100% AW — ] - . -:I 100% ~ T v - -
95% |- T_“ ........ = | e o] 9594 o T e ram
BlOCk 90% o] 0%} - R |
85%| v 1 OS =t 1 58 1 85%|
Stlmulation 80% e ‘ of kaidsas has 4 80%} 4 |- .
75% bIOCkS bIOCkS o] USR] (FTACRTY AT ERRTRRrnl [ EDRIS powmeors) CYREEY) paveer

1s TR 4s 1s TR 4s 1s TR 4s 1s TR 4s
I, I

100% 7 = T el i el - ..m:| 100% _....‘...IJ..._..... ......... ey ) e [ S <
Q5% f - 7 ..... ................. BY---- : L-rrr--:- 950 |-t Kt b e :
90% |- PR 4 A - a0% covsvisi iy AvsanRoRvRvyed N

85% — 1 — YT I [ |\ Py
Event-Related .| \ L\ N ool S | ). .
. . T5% daiae e ... ].. . - . - - 75% -} - - - [ B -] - - d
Stlmulatlon 70% e 'en / ........ B even‘t/ ........ e 70% | : ..~.{./.\.\ ........ e
65% | : R S . Y. . % 659 b5 Lo
60% 4 2 -_ ‘Diss 60%------ oo doenno . - B e adtvacd — 3

Sladky et al, Neurolmage 2011
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° ° ° ° n Translational.
Slice-timing correction (STC): wJ W "

Experiment

Paired t-Test: orginal vs.

original original+TD | STC
y N ’

\

original+TD STC STC+TD

|

>
ES
Es
oo
WE

(]
NE

_Z =-4 mm
visual cortex

Z=-24 mm
cerebellum

Sladky et al, Neurolmage 2011
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Sources of Noise in fMRI

Subject Motion Spatial Preproc
Acquisition Timing
Anatomical Identity Spatial Preproc

Inter-subject variability EESIeEIEIN(ETol(e]e

Thermal Noise Spatial Preproc

Physiological Noise

= A Translational

Neuromodeling

W S o

Realignment
Slice-Timing
Co-registration
Segmentation

Smoothing

PhysIO Toolbox




° ° C n Translational.
Finite Resolution and T Y e

Voxel Identity

® voxel = volume

Lars Kasper Signal, Noise and Preprocessing



° - e n Translational'
Spatlal PreproceSS]_ng m— v v Bﬁiromodelmg

Correcting Voxel Mismatches

Voxel Mismatch Between

Inter-Modal Normalisation/
Coregistration Segmentation

Realignment




° - e n Translational'
Spatial Preprocessing T Y oomeeine

REALIGN COREG SEGMENT NORM
WRITE SMOOTH

GLM

Lars Kasper Signal, Noise and Preprocessing



Spatial Preprocessing Input  —3
Output
fMRI time-series Structural MRI TPMs
Segmentation

Deformation Fields

(y_struct.nii)

Kernel

SMOOTH

Motion corrected Mean functional

mi
mai

msi

0

Signal, Noise and Preprocessing
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(Headers changed)

MNI Space




e n Translational.
General Remarks on NF Y omene

Image Registration

= Realignment, Co-Registration and Normalisation (via
Unitied Segmentation) are all zzage registration methods

= Goal: Manipulate one set of images to arrive in same
coordinate system as a reference image

= Key ingredients for image registration

Voxel-to-world mapping
Transformation
Similarity Measure

Optimisation

Interpolation




— n Translational

A. Voxel-to-Wotld Mapping w7 W

= 3D images are made up of voxels.

= Voxel intensities are stored on disk as lists of numbers.

" Meta-information about the data:

Lars Kasper

image dimensions
A
conversion from list to 3D array ’ 4

“voxel-to-world mapping”

Spatial transformation that maps
from: data coordinates (voxel column 1, row j, slice k)
to: a real-world position (x,y,z mm) in a coordinate system e.g.:

Scanner coordinates
T&T/MNI coordinates

Signal, Noise and Preprocessing



A. Voxel-to-World: W\
Standard Spaces

The Talairach Atlas The MNI/ICBM AVG152 Template
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The MNI template follows the convention of T&T, but doesn’t match the particular brain
Recommended reading: http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach
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= n Translational

= Neuromodeling
B. Transformations W WU
Translation Rotation
" Transformations describe the P 5 A
mapping of all image voxels from A P
one coordinate system into another N
= Types of transformations A B
rigid body = translation + rotation I
affine = rigid body + scaling + shear  ——— N S

non-linear = any mapping

(x,y,2) to new values (xX,y’, 2)

described by deformation fields

SR
}HH\IIH
) 1L .

}

T
Tt

T

Lars Kasper Signal, Noise and Preprocessing



° ° ° n Translational.
C. Similarity Measures & N ol

D. Optimisation

= Similarity measure summarizes resemblance of
(transformed) image and reference into 1 number

mean—squared differeﬂce Mos; probatl>le solu'tion ' : l ' ' ' '
| ] Objective } (glopal optimum)

correlation-coefficient  function | ocatpimp Locatoptimum

mutual information

Value of parameter
= Automatic image registration uses an optimisation
algorithm to maximise/minimise an “objective function”

Similarity measure is part of objective function

Algorithm searches for transformation that maximises similarity of
transformed 1mage to reference

Also includes constraints on allowed transformations (priors)

Lars Kasper Signal, Noise and Preprocessing



° - n Translational.
Spatial Preprocessing & N R\ s

Image Registration Contents

B. Allowed Transformations

Rigid-Body Affine Non-linear

REALIGN COREG

SEGMENT NORM
WRITE

C. Similarity Measure

Mean-squared Mutual Tissue Class

Difference Information Probability
D. Optimisation

Exact Linearized Conjugate Direction Iterated Conditional Modes
Solution Line Search (EM/Levenberg-Marquardt)

Lars Kasper Signal, Noise and Preprocessing



— n Translational

Neuromodeling

E. Reslicing/Interpolation W Wl

" Finally, images have to be saved as voxel intensity list on

disk again

= After applying transformation parameters, data 1s re-
sampled onto same grid of voxels as reference image

Reoriented Resliced

.

1x1x3 mm | 2x2x2 mm
voxel size voxel size

Signal, Noise and Preprocessing

Lars Kasper



E. B-spline Interpolation W Wl

= A Translational

Neuromodeling

A continuous function is represented by
a linear combination of basis functions

2D B-spline basis functions
of degrees 0,1, 2 and 3

&

Nearest neighbour and
trilinear interpolation are
the same as B-spline
interpolation with degrees
Oand 1.

Lars Kasper

Signal, Noise and Preprocessing




Spatial Preprocessing Input  —3
Output
fMRI time-series Structural MRI TPMs
Segmentation

Deformation Fields

(y_struct.nii)

Kernel

SMOOTH

Motion corrected Mean functional

mi
mai

msi

0

Signal, Noise and Preprocessing

mi:
max

ns2

0

mis
Mas

Mmss

0

Mia
Moaa

M3a

1

(Headers changed)

MNI Space




— n Translational

Neuromodeling

Realignment W I o

fMRI time-series

" Aligns all volumes of all runs
spatially

" Rigid-body transformation:
three translations, three

rotations

" Objective function: mean
squared error of
corresponding voxel

intensities

" Voxel correspondence via

Interpolation

Motion corrected Mean functional

Lars Kasper Signal, Noise and Preprocessing



° n Translational'
Realignment Output: T Y e

Parameters

translation
0.05
A |\
Yy ] )
0 “\\",'— | ) A |”| N ’ ) N W, B
" l‘.‘/ L\ .". clll‘ /| ,l \ | | ) '. o ‘ 'V \ P AV’/ v
-0.05} " ! #*\: Y '~\ \J I‘al ‘i | I\" 87 AL f YYERE A A A N~ |
LY B Y J Y\l N
N "-"‘-,'.'\ \ ! '\/\\‘_\‘/ l ™ _‘_/ . . -
_ - \/ L ~— N SV J. VN .
d 0.1 \/_\\: (I\ ) A N i " \ “\ \ '
B — \/ J ! ] L
-0.15 oo N i A
X translatioh NN
-0.2 y translatioh N A
-0.25 z translatioh V= VOLA A
-0.3 ! 1 1 1 1 1 J
0 10 20 30 40 50 60 70 80 30 100
image
rotation
0.4
0.3F : ~ ,.-"\_, pitch
S AYAR A roll
A N\ ) A\ .,A"-\'.__.ﬁ\vl"l\_. A J "\_.l‘
u v’\'-/\./' \V - -\ ! yaw
o
Y]
o P - NN —— -
] VN v ~ N A
'U h - - a4 - —
~0.1F N -
0.2+ T N e P o P —— e T N
-0.3 i 1 1 1 1 1 )
0 10 20 30 40 50 60 70 80 30 100
image

Lars Kasper Signal, Noise and Preprocessing



fMRI Run bnv

after Realignhment
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. . n Translational.
Co-Registration N\ Loeine

Structural MRI " Aligns structural image to

mean functional image

= Affine transformation:
translations, rotations, scaling,

shearing

" Objective function: mutual
information, since contrast
different

Optimisation via Powell’s

method: conjugate directions,

mo M Mz N ]ine SeaCh along parameters

M2 M2 M3 Mo
mn mn m» my 1ypically only transtformation

00 0 1) matrix (“header”) changed

Motion corrected = Mean functional (Headers changed) (IlO I‘CShCIIlg>

Lars Kasper Signal, Noise and Preprocessing



Translational
Neuromodeling
Unit

m A

Co-Registration: Output v \J

Joint Histogram

Marginal Histogram

120 120 =
100 100 M~
o 80 : \';
&0 60 ,"'
10 40 |
2off 20 il
Mean functional Anatomical MRI e
20 40 6 & 100 120 0 5 10 15
W
. . ‘ intensity bins
" Joint and marginal Histogram | s
101},
R d \\\
Quantify how well one image 8 N
(5] -"\_ . o
: S oint Histogram:
predicts the other 4 \ . . 8 .
‘1. h(lf’ls)
2 |
how much shared information o '1 Count of voxels who

Joint probability distribution

estimated from joint histogram

Lars Kasper

20 40 @0 80 100 120
intensity bins

structural

Signal, Noise and Preprocessing

have intensity i, in
functional and i in

structural image

KZ)



— n Translational

b b Neuromodeling
Co-Registration: Output W WU
= Voxels of same tissue Normalised Mutual Information Coregistration
K1 = 3,000+ .019%Y +) 01742 +28 728
° b Y1 = -0.020% +2.000%Y +) 043*Z +32 827
ldentlty Should have Same 21 = -0.008%X -0.015%Y +1 000°Z -8.467
Original Joint Histogram Final Joint Histogram

intensity in an MR-contrast

©

g
g

" ]n a second MR contrast,
this intensity might be ) 9
different, but still the same oz oz oz oz
among all voxels of the

JEM00223_004.im
A M00223_004.im

same tissue type

" Therefore, aligned voxels
in 2 images induce crisp
peaks in joint histogram

Lars Kasper Signal, Noise and Preprocessing



Sources of Noise in fMRI

Subject Motion
Acquisition Timing
Anatomical Identity

Inter-subject variability EESIeEIEIN(ETol(e]e

Thermal Noise

Physiological Noise

= n Translational

Neuromodeling

W S o

Realignment
Slice-Timing
Co-registration
Segmentation

Smoothing

PhysIO Toolbox
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Inter-subject Variability W




° ° - n Translational.
Spatial Normalisation T Y e

- Reasons

= Inter-Subject Averaging
Increase sensitivity with more subjects (fixed-effects)

Generalise findings to population as a whole (mixed-effects)

= Ensure Comparability between studies (alignment to
standard space)

Talairach and Tournoux (T&T) convention using the Montreal
Neurological Institute (MNI) space

Templates from 152/305 subjects




n Translational

Neuromodeling

Unified Segmentation W

Structural MRI TPMs

Segmentation

Deformation Fields

(y_struct.nii)

SEGMENT

mi mp s Mia

mai Mx M2z Mo

ms: M3 Mz M3

O 0 0 1

Motion corrected = Mean functional (Headers changed) MNI Space

Lars Kasper Signal, Noise and Preprocessing



° ° ° e n Translational.
Normalisation via N Y oo

Unified Segmentation

= MRI imperfections: No simple similarity measure, a lot of
possible transformations...

Noise, artefacts, partial volume effects
Intensity inhomogeneity (bias field)

Geometric/Contrast differences between sequences

Normalisation of segmented tissues 1s more robust and precise
than of original image

Tissue segmentation benefits from spatially aligned tissue
probability maps (of prior segmentation data)

This czrenlarity motivates simultaneous segmentation and
normalisation in a unified model

Signal, Noise and Preprocessing



° n Translational.
Summary of the unified model s W™

= SPM12 implements a generative model of voxel intensity
from tissue class probabilities

Principled Bayesian probabilistic formulation

Segmentation by inverting a Gaussian mixture model

= Deformations of prior tissue probability maps (TPMs,
priors) are also part of the model

The inverse of the transformation that aligns the TPMs can be
used to normalise the original image

Non-linear deformations are constrained by regularisation factors

= Bias correction is included within the model




— n Translational

Neuromodeling

Mixture of Gaussians W W

= (lassification is based on a Mixture of Gaussians model,
which represents the intensity probability density by a
number of Gaussian distributions.

= Multiple Gaussians per tissue class allow non-Gaussian
intensity distributions to be modelled

e.g. partial volume effects

Frequency
(number
W ot Ty of pixels)
\"i.,,_ —~ ,
| L P |

Image Intensity —

Signal, Noise and Preprocessing
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Neuromodeling

Tissue intensity distributions W VW
(T1-weighted MRI)

0.04 T T T T
Grey Matter
= White Matter
0.035] —CSF M
" Bone
Soft Tissue
0.03]1 AirfBackground ||
= 0.025 H u
2
[H
0
£ 0020 .
=
[1+]
0
o
o 0.015F s
0.017 .
0.005 ] .
0 j . \.I | 1} |
0 100 200 300 400 500 600 700 800 900 1000

Intensity

Signal, Noise and Preprocessing
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- A Translational

Neuromodeling

Tissue Probability Maps W U

= Tissue probability maps (IPMs) are used as the prior,
instead of the proportion of voxels in each class

ICBM Tissue Probabilistic Atlases. These tissue probability maps were
kindly provided by the International Consortium for Brain Mapping

Signal, Noise and Preprocessing



Deforming the Tissue W \V temdaig
Probability Maps

= Tissue probability maps

images are warped to

match the subject

" The inverse transform
warps to the TPMs




- A Translational

Why regularisation? — W
Overfitting
= Regularisation Rifine
. registration
constrains (oo
deformations to ﬂ.l)
realistic range
(implemented as
priors) - r Non-linear
. émp ate registration
Non-linear image without
registration —
. regularisatior
using (etror =
regularisation \ 287.3)

(error = 302.7)

_



Modelling inhomogeneity -' Mmmng
W OO 00

N [ e
= A multiplicative bias field is modelled as a Suu=SaSsSRi

combination of basis functions. o i i e o

Corrupted image Bias Field Corrected image
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Neuromodeling

Segmentation results LV ™ Qi

Spatially
normalised
+<— BrainWeb
phantoms

(T1, T2, PD)

Tissue
probability
maps of GM

and WX\\

segmentation
works
irrespective
of 1mage
contrast

Cocosco, Kollokian, Kwan & Evans. “BrainWeb: Online Interface to a 3D MRI Simulated Brain Database”. Neurolmage 5(4):S425 (1997)

Lars Kasper Signal, Noise and Preprocessing



Benefits of Unified
Segmentation

Atfine registration Non-linear registration




° ° ~ n Translational.
Spatial normalisation — T Y e

Limitations

= Seek to match functionally homologous regions, but...
Challenging high-dimensional optimisation
many local optima
Different cortices can have different folding patterns

No exact match between structure and function
Interesting recent paper Amiez et al. (2013), PMID:23365257

= Compromise

Correct relatively large-scale variability

Smooth over finer-scale residual differences

Signal, Noise and Preprocessing



° n Translational'
SmOOthlng — -v v B(re]iromodellng

Why blurring the data?

= Intra-subject signal quality

Suppresses thermal noise (averaging)

Increases sensitivity to etfects of similar scale to Kernel
kernel (matched filter theorem)

= Single-subject statistical analysis

Makes data more Gaussian (central limit theorem)

Reduces the number of multiple comparisons

= Second-level statistical analysis

Improves spatial overlap by blurring
anatomical differences



= n Translational

Neuromodeling

Smoothing — v VW
How is it implemented?

= Convolution with a 3D Gaussian kernel, of specified full-
width at half-maximum (FWHM) in mm

* mathematically equivalent to slice-timing operation or reslicing,
but different kernels there (Sinc, b-spline)

= Gausstian kernel 1s separable, and we can smooth 2D data
with 2 separate 1D convolutions

A 2D
Gaussian
Kernel




. n Translatiog:llm
fMRI Run after Smoothing W Wi

Lars Kasper Signal, Noise and Preprocessing



Spatial Preprocessing Input  —3
Output
fMRI time-series Structural MRI TPMs
Segmentation

Deformation Field

(y_struct.nii)

Kernel

SMOOTH

Motion corrected Mean functional

mi
mai

msi

0

Signal, Noise and Preprocessing

mi:
max

ns2

0

mis
Mas

Mmss

0

Mia
Moaa

M3a

1

(Headers changed)

MNI Space




Sources of Noise in fMRI

Subject Motion
Acquisition Timing
Anatomical Identity
Inter-subject variability

Thermal Noise

Physiological Noise

— n Translational

Neuromodeling

W S o

Realignment
Slice-Timing
Co-registration
Segmentation

Smoothing

PhysIO Toolbox




A Translational'
The Problem: N\ s

Physiological Noise

/\>

Cardiac effects Respiratory effects




n Translational.
The Problem: N R e

Physiological Noise

/\

Cardiac effects A Cardiac Cycle in the Brain

Systole:

Blood pumped into brain, vessel

volume increases: pulsatile vessels

CSF pushed down: pulsatile CSF

Diastole:

Vessel volume decreases
CSF flows back into “void” brain

volume

Lars Kasper Signal, Noise and Preprocessing



A Translational'
The Problem: N\ s

Physiological Noise

Cardiac ef Respiratory effects

R B R R Chest (&head) moves with

22 respiratory cycle

Changes in lung volume change
encoding magnetic field for MR

Geometric distortion/scaling

Respiratory-sinus arrythmia

Heart beats faster during inhalation

Lars Kasper Signal, Noise and Preprocessing



° n Translational'
The Solution: Image-based oA=L

Physiological Noise Correction

Image-based Physiological
Noise Correction

/\

Model-based Using
Peripheral Data

N O

Exploratory

Temporal Spatial Priors . Pre-Measured
’ . . Fourier
Priors on Noise on Noise ' Response
4 Expansion .
Spectrum Location Functions
I
A4 / \"4 y ~
Spatial ICA CORSICA RETROICOR Cardiac Respiratory
(Thomas et al., (Perlbarg et (Glover et al., (Chang & (Birn et al.,
2002) al., 2007) 2000) Glover, 2009) 2006)
Breathing & CSF Pools (Flow) Respira: ratory
Cardiac Frequency = Vessels (Pulsation) Cardiac e/Time

(~0.25 Hz, ~1 Hz)

Lars Kasper Signal, Noise and Preprocessing



The Solution: NI I e
Physiological Noise Correction

, RETROICOR cardiac regressors, vertical shift for visibility

1se

n and

‘ ent

NN
(il 'f% M\' ."y’v o‘wwi’

100

.'\0\ 1
Jili M'M'A’

V'/

scans

ECG,PPU  — Cardiac cycle Confound

Breathing belt — Respiratory cycle regressors

Capnograph — CO, concentration




: AN et
SPM Ba;c\ch Editor gnterface v W

Module List

Realign: Estimate & Res #

TAPAS PhyslO Toolbox
fMRI model specification
Current Module: TAPAS PhyslO Toolbox
Help on: TAPAS PhyslO Toolbox o
save dir
log_files
. vendor Philips
. log_cardiac <X
. log_respiration <X
. log_scan_timing <X
. sampling_interval 0|=
_relative_start_acquisition 0
sqpar (Sequence timing parameters)
. Nslices <X
. NslicesPerBeat 1]
.TR <X
. Ndummies <X
. Nscans <X
. onset_slice <X
.time_slice_to_slice 0
. Nprep 1]
= |thresh (Thresholding parameters for de-noising and timing)
. Scan/Physlog Time Synchronization
. cardiac
.. modality ECG
.. Initial Detection of Heartbeats
... load_from_logfile
.. Post-hoc Selection of Cardiac Pulses
| Off
model
type (RETRO)
order
cardiac 3
respiratory 4
cardiac X respiratory 1
orthogonalise none
input_other_multiple_regressors
output multiple regressors essors ixt |
verbose
level 2
fig_output_file "
use_tabs false ~

tapas physio report contrasts()
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When? — PhyslO experience W W

Andreea Diaconescu (IINU): Social Learning Experiment,
“Inferring on the Intentions of Others”

A 2nd-level F-Contrasts Subjects with Significant Noise Reduction
T A x=-3 ‘ y=-32 z=-11 BB

Cardiac
Regressors

Respiratory A&
Regressors ™

. 15
Interaction 33
Regressors

(Cardiac X
Respiration) )

Diaconescu, et al., 2014. PLoS Comput Biol 10
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— A Translational

Neuromodeling

When? — PhyslO experience W WU

= Andreea Diaconescu (INU): Social Learning

Higher sensitivity for group effects (N=35)
Prediction of advice reliability: dmPFC, bilateral FFA
Prediction error: dmPFC

Less false/ambiguous positives:

Brainstem (Substantia Nigra)

Predicting Advice Reliability Social Prediction Error Social Prediction Error
Wit Without Wit Without NoPhysIO > PhyslO
PhyvsIO PhysIO PhyvsIO PhysIO \‘

- ~
t LIS N )

- &
o

SPM(T, )

s,y SPM(T, 3 ; SPM(T, ) SPMT,}
¢ . % . <

B

Peak-level p < 0.05 corrected Cluster level p < 0.05 FWE, k >250

Peak-level p < 0.05 corrected Cluster level p < 0.05 FWE, k >100

X356
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. m N oo
When? — PhyslO experience W WU

Predicting Advice Reliability

Without
PhysIO

# = * - .‘{ L o< - <
& ey f SPUT,
<
. &
&
Peak-level p < 0.05 corrected Cluster level p < 0.05 FWE, k >250 t

cial Prediction Error
loPhysIO > PhyslO

%eak level p < 0.02 uncorrected
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When? — PhyslO experience W WU

Social Prediction Error

Without
PhysIO

-~
< "< <

»
™

Social Prediction Error
NoPhyslO > PhyslO
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— n Translational

Neuromodeling

When? — PhyslO experience W WU

" Andreea Diaconescu (INU): Social I ~~==s~~

Social Prediction Error

Higher sensitivity for group effects (IN=: NoPhyslO > PhysIO
Prediction of advice reliability: dmPFC, bilate

Prediction error: dmPFC

L 3 L 3
Less false/ambiguous positives:
Brainstem (Substantia Nigra) ] SPM{(T,g)
Predicting Advice Reliability Social Prediction Errc Peak level p < 0.02 uncorrected
Wit Withou Wit
tn * ww . - - = 4
&"' . SPM(T, ) ¢ SPM{T,) X . SPM(T, )
L

Peak-level p < 0.05 corrected Cluster level p < 0.05 FWE, k >250

Peak-level p < 0.05 corrected

X356
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Sources of Noise in fMRI

Subject Motion

Spatial Preproc

Acquisition Timing
Anatomical Identity
Inter-subject variability

Thermal Noise

Physiological Noise

Temporal Preproc

Spatial Preproc

Spatial Preproc

Spatial Preproc

R ——

= n Translational

Neuromodeling

W S o

Realignment
Slice-Timing
Co-registration
Segmentation

Smoothing

PhysIO Toolbox




Spatial Preprocessing Input  —3
Output
fMRI time-series Structural MRI TPMs
Segmentation

Deformation Field

(y_struct.nii)

Kernel

SMOOTH

Motion corrected Mean functional

mi
mai

msi

0

Signal, Noise and Preprocessing

mi:
max

ns2

0

mis
Mas

Mmss

0

Mia
Moaa

M3a

1

(Headers changed)

MNI Space
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Thank you... W W

= .and:

TNU Zurich,
in particular: Klaas
MR-technology Group IBT

in particular: Klaas

b

Everyone I borrowed slides
from ©
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