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Translational  
Neuromodeling  
Unit fMRI = Acquiring Movies 

§  …of three-
dimensional Blood 
Oxygen-Level 
Dependent (BOLD) 
contrast images 

§  typically echo-planar 
images (EPI) 
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§  Run/Session: 
Time Series of  
Images 

y 

x 

z 

… 
scan 1 time scan N 

Task Task 
No Task 



Translational  
Neuromodeling  
Unit fMRI = Acquiring Movies 
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§  Run/Session: 
Time Series of  
Images 

… 
scan 1 time scan N 

§  The Localized Time-series is 
the Fundamental Information 
Unit of  fMRI 

Signal: Fluctuation through 
Blood oxygen level dependent 
(BOLD) contrast 

Noise: All other fluctuations 



Translational  
Neuromodeling  
Unit fMRI Movie: An example 
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Translational  
Neuromodeling  
Unit fMRI Movie:  

Subtracting the Mean 
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§  interest in fluctuations 
only 



Translational  
Neuromodeling  
Unit Introducing the Dataset 

(MoAE) 

§  Mother of All Experiments: Auditory Stimulation 
§  TR 7 seconds 
§  6 TR rest 
§  6 TR binaural stimulation  
(1 bi-syllabic word per second) 
 

§  Chapter 28 of SPM manual 
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Translational  
Neuromodeling  
Unit The Goal of Preprocessing 

Lars Kasper 8 Signal, Noise and Preprocessing 

Before After 

Preprocessing 



Translational  
Neuromodeling  
Unit Sources of Noise in fMRI 
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§  Subject Motion 

§  Acquisition Timing 

§  Anatomical Identity 

§  Inter-subject variability 

§  Thermal Noise 

§  Physiological Noise 

Spatial Preproc 

Temporal Preproc 

Noise Modelling 

Spatial Preproc 

Spatial Preproc 

Spatial Preproc 

§  Realignment 

§  Slice-Timing 

§  Co-registration 

§  Segmentation 

§  Smoothing 

§  PhysIO Toolbox 



Translational  
Neuromodeling  
Unit The SPM Graphical User  

Interface (GUI) 
§  Preprocessing 

§  Realignment 
§  Slice-Timing Correction 
§  Co-registration 
§ Unified Segmentation & 

Normalisation 
§  Smoothing… 

§  Noise Modelling 
§  Physiological Confound 

Regressors 
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1. 

2. 
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Neuromodeling  
Unit Sources of Noise in fMRI 
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§  Subject Motion 

§  Acquisition Timing 

§  Anatomical Identity 

§  Inter-subject variability 

§  Thermal Noise 

§  Physiological Noise 

Temporal Preproc 

§  Realignment 

§  Slice-Timing 

§  Co-registration 

§  Segmentation 

§  Smoothing 

§  PhysIO Toolbox 



Translational  
Neuromodeling  
Unit Slice-timing correction (STC) 
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§ Slices of  1 scan volume are not acquired simultaneously 
(60 ms per slice) 

§ Creates shifts of  up to 1 volume repetition time (TR), i.e. 
several seconds 

§ Reduces sensitivity for time-locked effects (smaller 
correlation) 

z 

time 

True 2D Acquisition Same-Timepoint Assumption 



Translational  
Neuromodeling  
Unit Slice-timing correction  

(STC) 
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Sladky et al, NeuroImage 2011 

§ Slice-timing correction: All voxel time 
series are aligned to acquisition time of  
1 slice (e.g. centre slice) 

§ Missing data is interpolated via sinc-
interpolation (band-limited  signal) 

§ Before or after realignment? 
§ before: dominant through-slice motion 

§ after: dominant within-slice motion 

§ At all? 
§ block design: for long TR (3s+) & short 

blocks (10s) improves estimates > 5 % 

§ event-related: for normal TRs (2s+)  
improves estimates > 5 % 



Translational  
Neuromodeling  
Unit Slice-timing correction (STC):  

Simulation 
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Sladky et al, NeuroImage 2011 

Slice-timing  
Correction 

Block 
Stimulation 

Temporal-Derivative  
Modelling 

TR 1s 4s TR 1s 4s TR 1s 4s TR 1s 4s 

10s  
blocks 

15s  
blocks 

Event-Related 
Stimulation event/ 

4±2 s 
event/ 
6±3s 



Translational  
Neuromodeling  
Unit Slice-timing correction (STC): 

Experiment 
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Sladky et al, NeuroImage 2011 



Translational  
Neuromodeling  
Unit Sources of Noise in fMRI 
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§  Subject Motion 

§  Acquisition Timing 

§  Anatomical Identity 

§  Inter-subject variability 

§  Thermal Noise 

§  Physiological Noise 

Spatial Preproc 

Spatial Preproc 

Spatial Preproc 

Spatial Preproc 

§  Realignment 

§  Slice-Timing 

§  Co-registration 

§  Segmentation 

§  Smoothing 

§  PhysIO Toolbox 



Translational  
Neuromodeling  
Unit Finite Resolution and 

Voxel Identity 
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§  voxel = volume 
element (3D pixel) 



Translational  
Neuromodeling  
Unit Spatial Preprocessing =  

Correcting Voxel Mismatches 
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Voxel Mismatch Between 

Functional  
Scans/Runs 

Functional/Structural 
Images  

Subjects 

Realignment 
Inter-Modal 

Coregistration 

Normalisation/
Segmentation 

Smoothing 



Translational  
Neuromodeling  
Unit 

REALIGN COREG SEGMENT NORM 
WRITE SMOOTH 

GLM 

Spatial Preprocessing 
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Translational  
Neuromodeling  
Unit 

fMRI time-series 

Motion corrected Mean functional 

REALIGN COREG 

Structural MRI 

SEGMENT NORM 
WRITE SMOOTH 
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Spatial Preprocessing 



Translational  
Neuromodeling  
Unit General Remarks on  

Image Registration 

§  Realignment, Co-Registration and Normalisation (via 
Unified Segmentation) are all image registration methods 

§  Goal: Manipulate one set of images to arrive in same 
coordinate system as a reference image 

§  Key ingredients for image registration 
A.  Voxel-to-world mapping 
B.  Transformation 
C.  Similarity Measure 
D.  Optimisation 
E.  Interpolation 
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Translational  
Neuromodeling  
Unit A. Voxel-to-World Mapping 

§  3D images are made up of voxels. 

§  Voxel intensities are stored on disk as lists of numbers. 

§  Meta-information about the data: 
§  image dimensions  

§  conversion from list to 3D array 

§  “voxel-to-world mapping” 
§  Spatial transformation that maps  

§  from: data coordinates (voxel column i, row j, slice k)  
§  to: a real-world position (x,y,z mm) in a coordinate system e.g.: 
§  Scanner coordinates 
§  T&T/MNI coordinates 
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Translational  
Neuromodeling  
Unit 

The MNI template follows the convention of  T&T, but doesn’t match the particular brain 
Recommended reading: http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach  

The Talairach Atlas The MNI/ICBM AVG152 Template 
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A. Voxel-to-World: 
Standard Spaces 



Translational  
Neuromodeling  
Unit B. Transformations 

§  Transformations describe the 
mapping of all image voxels from 
one coordinate system into another 

§  Types of transformations 
§  rigid body = translation + rotation 
§  affine = rigid body + scaling + shear 
§  non-linear = any mapping 

§  (x,y,z) to new values (x’,y’, z’)  
§  described by deformation fields 
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Translation Rotation 

Scaling Shear 

non-linear 

deformation 



Translational  
Neuromodeling  
Unit C. Similarity Measures &  

D. Optimisation 

§  Similarity measure summarizes resemblance of 
(transformed) image and reference into 1 number 
§ mean-squared difference 
§  correlation-coefficient 
§ mutual information 

§  Automatic image registration uses an optimisation 
algorithm to maximise/minimise an “objective function” 
§  Similarity measure is part of objective function 
§ Algorithm searches for transformation that maximises similarity of 

transformed image to reference 
§ Also includes constraints on allowed transformations (priors) 
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intra-modality (same contrast) 

inter-modality (different contrasts possible) 



Translational  
Neuromodeling  
Unit 

REALIGN COREG SEGMENT NORM 
WRITE 

Spatial Preprocessing & 
Image Registration Contents 
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B. Allowed Transformations 

Rigid-Body Affine Non-linear 

C. Similarity Measure 

Mean-squared  
Difference 

Mutual  
Information 

Tissue Class  
Probability 

D. Optimisation 

Exact Linearized 
Solution 

Conjugate Direction  
Line Search 

Iterated Conditional Modes  
(EM/Levenberg-Marquardt) 



Translational  
Neuromodeling  
Unit 

 
 
1x1x3 mm 
 voxel size 

 
2x2x2 mm 
voxel size  

E. Reslicing/Interpolation 

§  Finally, images have to be saved as voxel intensity list on 
disk again 

§  After applying transformation parameters, data is re-
sampled onto same grid of voxels as reference image 
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Reoriented Resliced 



Translational  
Neuromodeling  
Unit E. B-spline Interpolation 
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Translational  
Neuromodeling  
Unit 

fMRI time-series 

Motion corrected Mean functional 

REALIGN COREG 

Structural MRI 

SEGMENT NORM 
WRITE SMOOTH 

TPMs 
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Spatial Preprocessing 



Translational  
Neuromodeling  
Unit 

fMRI time-series 

Motion corrected Mean functional 

REALIGN 
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Realignment 

§  Aligns all volumes of  all runs 
spatially 

§  Rigid-body transformation: 
three translations, three 
rotations 

§  Objective function: mean 
squared error of  
corresponding voxel 
intensities 

§  Voxel correspondence via 
Interpolation 



Translational  
Neuromodeling  
Unit Realignment Output:  

Parameters 
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Translational  
Neuromodeling  
Unit fMRI Run  

after Realignment 
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Translational  
Neuromodeling  
Unit 

§  Aligns structural image to 
mean functional image 

§  Affine transformation: 
translations, rotations, scaling, 
shearing 

§  Objective function: mutual 
information, since contrast 
different 
§  Optimisation via Powell’s 

method: conjugate directions, 
line seach along parameters 

§  Typically only transformation 
matrix (“header”) changed 
(no reslicing) Motion corrected Mean functional 

COREG 

Structural MRI 
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Co-Registration 



Translational  
Neuromodeling  
Unit 

intensity bins 

structural 

Marginal Histogram 

intensity bins 

functional 

Joint Histogram 

Anatomical MRI 
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Co-Registration: Output 

Mean functional 

§  Joint and marginal Histogram 

§  Quantify how well one image 

predicts the other 

§  how much shared information 

§  Joint probability distribution 

estimated from joint histogram 

Joint Histogram: 

h(if,is) 

Count of  voxels who 

have intensity if in 

functional and is in 

structural image 



Translational  
Neuromodeling  
Unit Co-Registration: Output 

§  Voxels of same tissue 
identity should have same 
intensity in an MR-contrast 

§  In a second MR contrast, 
this intensity might be 
different, but still the same 
among all voxels of the 
same tissue type 

§  Therefore, aligned voxels 
in 2 images induce crisp 
peaks in joint histogram 
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Translational  
Neuromodeling  
Unit Sources of Noise in fMRI 
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§  Subject Motion 

§  Acquisition Timing 

§  Anatomical Identity 

§  Inter-subject variability 

§  Thermal Noise 

§  Physiological Noise 

Spatial Preproc 

§  Realignment 

§  Slice-Timing 

§  Co-registration 

§  Segmentation 

§  Smoothing 

§  PhysIO Toolbox 



Translational  
Neuromodeling  
Unit Inter-subject Variability 
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Translational  
Neuromodeling  
Unit Spatial Normalisation  

- Reasons 

§  Inter-Subject Averaging 
§  Increase sensitivity with more subjects (fixed-effects) 
§ Generalise findings to population as a whole (mixed-effects) 

§  Ensure Comparability between studies (alignment to 
standard space) 
§  Talairach and Tournoux (T&T) convention using the Montreal 

Neurological Institute (MNI) space 
§  Templates from 152/305 subjects 
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Translational  
Neuromodeling  
Unit 

Motion corrected Mean functional 

Structural MRI 

SEGMENT NORM 
WRITE 

TPMs 
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Unified Segmentation 

Motion corrected 



Translational  
Neuromodeling  
Unit Normalisation via  

Unified Segmentation 

§  MRI imperfections: No simple similarity measure, a lot of 
possible transformations… 
§ Noise, artefacts, partial volume effects 
§  Intensity inhomogeneity (bias field) 
§ Geometric/Contrast differences between sequences 

§ Normalisation of segmented tissues is more robust and precise 
than of original image 

§  Tissue segmentation benefits from spatially aligned tissue 
probability maps (of prior segmentation data) 

§  This circularity motivates simultaneous segmentation and 
normalisation in a unified model 
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Translational  
Neuromodeling  
Unit Summary of the unified model 

§  SPM12 implements a generative model of voxel intensity 
from tissue class probabilities 
§  Principled Bayesian probabilistic formulation 
§  Segmentation by inverting a Gaussian mixture model 

§  Deformations of prior tissue probability maps (TPMs, 
priors) are also part of the model 
§  The inverse of the transformation that aligns the TPMs can be 

used to normalise the original image 
§ Non-linear deformations are constrained by regularisation factors 

§  Bias correction is included within the model 
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Translational  
Neuromodeling  
Unit Mixture of Gaussians 

§  Classification is based on a Mixture of Gaussians model, 
which represents the intensity probability density by a 
number of Gaussian distributions. 

§  Multiple Gaussians per tissue class allow non-Gaussian 
intensity distributions to be modelled  
§  e.g. partial volume effects 
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Image Intensity 

Frequency 

(number  

of pixels)  



Translational  
Neuromodeling  
Unit Tissue intensity distributions 

(T1-weighted MRI) 
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Translational  
Neuromodeling  
Unit Tissue Probability Maps 

§  Tissue probability maps (TPMs) are used as the prior, 
instead of the proportion of voxels in each class 
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ICBM Tissue Probabilistic Atlases. These tissue probability maps were 
kindly provided by the International Consortium for Brain Mapping 



Translational  
Neuromodeling  
Unit Deforming the Tissue 

Probability Maps 

§  Tissue probability maps 
images are warped to 
match the subject 

§  The inverse transform 
warps to the TPMs 
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Translational  
Neuromodeling  
Unit 

Template 
image 

Affine 
registration 
(error = 

472.1) 

Non-linear 
registration 

without 
regularisation 

(error  = 
287.3) 

Non-linear 
registration 

using 
regularisation 

(error = 302.7) 

Why regularisation? – 
Overfitting 

§  Regularisation 
constrains 
deformations to 
realistic range 
(implemented as 
priors) 
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Translational  
Neuromodeling  
Unit Modelling inhomogeneity 

§  A multiplicative bias field is modelled as a linear 
combination of basis functions. 
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Corrupted image Corrected image Bias Field 



Translational  
Neuromodeling  
Unit 

Tissue 
probability 

maps of  GM 
and WM 

Spatially 
normalised 
BrainWeb 
phantoms 

(T1, T2, PD) 

Cocosco, Kollokian, Kwan & Evans. “BrainWeb: Online Interface to a 3D MRI Simulated Brain Database”. NeuroImage 5(4):S425 (1997) 

Segmentation results 
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§ segmentation 
works 
irrespective 
of  image 
contrast 



Translational  
Neuromodeling  
Unit Benefits of Unified 

Segmentation 
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Non-linear registration Affine registration 



Translational  
Neuromodeling  
Unit Spatial normalisation – 

Limitations 

§  Seek to match functionally homologous regions, but... 
§  Challenging high-dimensional optimisation 

§ many local optima 

§ Different cortices can have different folding patterns 
§ No exact match between structure and function 

§  Interesting recent paper Amiez et al. (2013), PMID:23365257 

§  Compromise 
§  Correct relatively large-scale variability  
§  Smooth over finer-scale residual differences 
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Translational  
Neuromodeling  
Unit 

SMOOTH 

GLM 

Kernel 

MNI Space 

Smoothing –  
Why blurring the data? 

§  Intra-subject signal quality 
§  Suppresses thermal noise (averaging) 
§  Increases sensitivity to effects of similar scale to 

kernel (matched filter theorem) 

§  Single-subject statistical analysis 
§ Makes data more Gaussian (central limit theorem) 
§  Reduces the number of multiple comparisons 

§  Second-level statistical analysis 
§  Improves spatial overlap by blurring   

 anatomical differences 
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Translational  
Neuromodeling  
Unit Smoothing – 

How is it implemented? 
 §  Convolution with a 3D Gaussian kernel, of specified full-

width at half-maximum (FWHM) in mm 
§ mathematically equivalent to slice-timing operation or reslicing, 

but different kernels there (Sinc, b-spline) 

§  Gaussian kernel is separable, and we can smooth 2D data 
with 2 separate 1D convolutions 
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Example of 
Gaussian smoothing in 
one-dimension 

A 2D 
Gaussian 
Kernel 

The Gaussian kernel is 
separable we can smooth 
2D data with two 1D 
convolutions. 

Generalisation to 3D is 
simple and efficient 



Translational  
Neuromodeling  
Unit fMRI Run after Smoothing 
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Unit 

fMRI time-series 

Motion corrected Mean functional 

REALIGN COREG 

Structural MRI 

SEGMENT NORM 
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TPMs 
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Spatial Preprocessing 
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Translational  
Neuromodeling  
Unit Sources of Noise in fMRI 
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§  Subject Motion 

§  Acquisition Timing 

§  Anatomical Identity 

§  Inter-subject variability 

§  Thermal Noise 

§  Physiological Noise Noise Modelling 

§  Realignment 

§  Slice-Timing 

§  Co-registration 

§  Segmentation 

§  Smoothing 

§  PhysIO Toolbox 



Translational  
Neuromodeling  
Unit The Problem:  

Physiological Noise 
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§ Cardiac effects § Respiratory effects 
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Unit The Problem:  

Physiological Noise 
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§ Cardiac effects 

§ Systole:  

§  Blood pumped into brain, vessel 

volume increases: pulsatile vessels 

§  CSF pushed down: pulsatile CSF 

§ Diastole: 

§ Vessel volume decreases 

§  CSF flows back into “void” brain 

volume 

A Cardiac Cycle in the Brain 



Translational  
Neuromodeling  
Unit The Problem:  

Physiological Noise 
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§ Cardiac effects § Respiratory effects 

§ Chest (&head) moves with 

respiratory cycle 

§ Changes in lung volume change 

encoding magnetic field for MR 

§ Geometric distortion/scaling 

§ Respiratory-sinus arrythmia 

§ Heart beats faster during inhalation 



Translational  
Neuromodeling  
Unit The Solution: Image-based 

Physiological Noise Correction 
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PhysIO 
Toolbox 



Translational  
Neuromodeling  
Unit 

1. 
Physiological 
Monitoring 

2. 
Preprocessing 

of  
Physiological 

Data 

3. Model time 
series 

physiological 
noise 

4. Noise 
Reduction and 

Assessment 

The Solution: 
Physiological Noise Correction 

Peripheral 
Devices 

PhysIO Toolbox SPM 

ECG, PPU  →   Cardiac cycle 

Breathing belt  →  Respiratory cycle 

Capnograph  →  CO2 concentration 

 

Confound 
regressors 
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Translational  
Neuromodeling  
Unit SPM Batch Editor Interface 
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Translational  
Neuromodeling  
Unit When? – PhysIO experience 

§ Andreea Diaconescu (TNU): Social Learning Experiment, 
“Inferring on the Intentions of Others” 
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Diaconescu, et al., 2014. PLoS Comput Biol 10 



Translational  
Neuromodeling  
Unit When? – PhysIO experience 

§  Andreea Diaconescu (TNU): Social Learning 
§ Higher sensitivity for group effects (N=35)  

§ Prediction of advice reliability: dmPFC, bilateral FFA 
§ Prediction error: dmPFC 

§  Less false/ambiguous positives: 
§ Brainstem (Substantia Nigra) 
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Unit When? – PhysIO experience 
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§  Brainstem (Substantia Nigra) 

Lars Kasper Signal, Noise and Preprocessing 64 



Translational  
Neuromodeling  
Unit When? – PhysIO experience 
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Unit When? – PhysIO experience 

§  Andreea Diaconescu (TNU): Social Learning 
§ Higher sensitivity for group effects (N=35)  

§ Prediction of advice reliability: dmPFC, bilateral FFA 
§ Prediction error: dmPFC 

§  Less false/ambiguous positives: 
§ Brainstem (Substantia Nigra) 
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Translational  
Neuromodeling  
Unit Sources of Noise in fMRI 
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§  Subject Motion 

§  Acquisition Timing 

§  Anatomical Identity 

§  Inter-subject variability 

§  Thermal Noise 

§  Physiological Noise 

Spatial Preproc 

Temporal Preproc 

Noise Modelling 

Spatial Preproc 

Spatial Preproc 

Spatial Preproc 

§  Realignment 

§  Slice-Timing 

§  Co-registration 

§  Segmentation 

§  Smoothing 

§  PhysIO Toolbox 
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Translational  
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Unit Thank you… 

§  …and: 
§  TNU Zurich,  

 in particular: Klaas 
§ MR-technology Group IBT,  

 in particular: Klaas 
§  Everyone I borrowed slides 

from J 
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