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What the brain is about

• What do our imaging methods measure? 

• Brain activity. 

• But when does the brain become active?

• When predictions (or their precision) have to be adjusted.

• So where do the brain’s predictions come from?

• From a model.
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What does this mean for neuroimaging?

If brain activity reflects model updating, we need to

understand what model is updated in what way to

make sense of brain activity.
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The Bayesian brain and predictive coding

Model-based prediction updating is described by Bayes’
theorem.

⟹ the Bayesian brain

This can be implemented by predictive coding.
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Hermann von Helmholtz



Advantages of model-based imaging

Model-based imaging permits us

• to infer the computational (predictive) mechanisms 
underlying neuronal activity.

• to localize such mechanisms.

• to compare different models.
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How to build a model
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𝑢 𝑥Sensory input Hidden states

Prediction

Inference based on
prediction errors

Fundamental ingredients:



Example of a simple learning model

Rescorla-Wagner learning:
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Previous value 
(prediction)

Learning rate

Prediction error (δ)

New inputInferred value of 𝑥

𝜇(𝑘) = 𝜇(𝑘−1) + 𝛼 𝑢(𝑘) − 𝜇(𝑘−1)
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From perception to action

Feb 6, 2015 Model-based imaging,    Zurich SPM Course,    Christoph Mathys Page 8

𝜆 𝑥

Sensory input

True
hidden states

Inferred
hidden states

Action

𝑢

𝑎

WorldAgent

Generative process

Inversion of perceptual
generative model

Decision model



From perception to action

• In behavioral tasks, we observe actions (𝑎).

• How do we use them to infer beliefs (𝜆)?

• We invert (i.e., estimate) a decision model.
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Example of a simple decision model

• Say 3 options A, B, and C have values 𝑣𝐴 = 8, 𝑣𝐵 = 4, and 𝑣𝐶 = 2.

• Then we can translate these values into action probabilities via a 

«softmax» function:

𝑝 𝑎 = 𝐴 =
e𝛽𝑣𝐴

e𝛽𝑣𝐴 + e𝛽𝑣𝐵 + e𝛽𝑣𝐶

• The parameter 𝛽 determines the sensitivity to value differences
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𝛽 = 0.1 𝛽 = 0.6



All the necessary ingredients

• Perceptual model (updates based on prediction errors)

• Value function (inferred state -> action value)

• Decision model (value -> action probability)
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Reinforcement learning example (O’Doherty et al., 2003)
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O’Doherty et al. (2003), 

Gläscher et al. (2010)



Reinforcement learning example

Feb 6, 2015 Model-based imaging,    Zurich SPM Course,    Christoph Mathys Page 13

O’Doherty et al. (2003)

Significant effects of 

prediction error with 

fixed learning rate



Bayesian models for the Bayesian brain
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𝑝 𝑢 𝑥, 𝜗
likelihood

∙ 𝑝 𝑥, 𝜗
prior

∝ 𝑝 𝑥, 𝜗 𝑢
posterior

• Includes uncertainty about hidden states.

• I.e., beliefs have precisions.

• But how can we make them computationally tractable?
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The hierarchical Gaussian filter (HGF): a computationally 
tractable model for individual learning under uncertainty
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Δ𝜇𝑖 ∝
 𝜋𝑖−1

𝜋𝑖
𝛿𝑖−1

• Inversion proceeds by introducing a mean field approximation and fitting
quadratic approximations to the resulting variational energies (Mathys et al.,
2011).

• This leads to simple one-step update equations for the sufficient statistics
(mean and precision) of the approximate Gaussian posteriors of the states
𝑥𝑖 .

• The updates of the means have the same structure as value updates in
Rescorla-Wagner learning:

• Furthermore, the updates are precision-weighted prediction errors.

HGF: variational inversion and update equations
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Prediction error

Precisions determine 

learning rate
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Example: Iglesias et al. (2013)
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Model comparison:



HGF: adaptive learning rate
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Simulation: 4.1  ,2.2  ,5.0  
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Individual model-based regressors
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Uncertainty-weighted prediction error 𝜎2 ∙ 𝛿1
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Example: Iglesias et al. (2013)
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Example: Iglesias et al. (2013)

Feb 6, 2015 Page 21Model-based imaging,    Zurich SPM Course,    Christoph Mathys



Example: Iglesias et al. (2013)
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Example: Iglesias et al. (2013)
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How to estimate and compare models:
the HGF Toolbox
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• Available at 

http://www.tranlsationalneuromodeling.org/tapas

• Start with README and tutorial there

• Modular, extensible

• Matlab-based



How it’s done in SPM
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How it’s done in SPM
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How it’s done in SPM
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How it’s done in SPM
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How it’s done in SPM
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Take home
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• The brain is an organ whose job is prediction.

• To make its predictions, it needs a model.

• Model-based imaging infers the model at work in the brain.

• It enables inference on mechanisms, localization of 
mechanisms, and model comparison.
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Thank you
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