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Advanced issues in fMRI statistics

* Nonparametric Inference
— What if | don’t trust my assumptions?

* Power

— What’s the chance of finding my effect? (pre-data)
 Meta-Analysis

— What does the literature say?



Nonparametric Inference

Parametric Null Dlstrlbutlon

e Parametric methods

— Assume distribution of
statistic under null
hypothesis

— Needed to find P-values, u,,

* Nonparametric methods
— Use data to find

distribution of statistic
under null hypothesis I“ | ||||I::o
|

—_ AIly statistic! Nonparametrlc Null Distribution




Permutation Test
Toy Example

* Data from V1 voxel in visual stim. experiment

A: Active, flashing checkerboard B: Baseline, fixation
6 blocks, ABABAB Just consider block averages...

A B A B A B
103.00 90.48 9993 &87.83 99.76  96.06

* Null hypothesis H,
— No experimental effect, A & B labels arbitrary

e Statistic
— Mean difference



Permutation Test
Toy Example

* Under H,

— Consider all equivalent relabelings

AAABBB ABABAB BAAABB BABBAA
AABABB ABABBA BAABAB BBAAAB
AABBAB ABBAAB BAABBA BBAABA
AABBBA ABBABA BABAAB BBABAA
ABAABB ABBBAA BABABA BBBAAA



* Under H,

Permutation Test

Toy Example

— Consider all equivalent relabelings

— Compute all possible statistic values

AAABBB 4.82

AABABB -3.25
AABBAB -0.67
AABBBA -3.15
ABAABB 6.86

ABABAB 9.45

ABABBA 6.97
ABBAAB 1.38
ABBABA -1.10
ABBBAA 1.48

BAAABB -1.48

BAABAB 1.10
BAABBA -1.38
BABAAB -6.97
BABABA -9.45

BABBAA -6.86

BBAAAB 3.15
BBAABA 0.67
BBABAA 3.25
BBBAAA -4.82



* Under H,

Permutation Test

Toy Example

— Consider all equivalent relabelings

— Compute all possible statistic values

— Find 95%ile of permutation distribution
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* Under H,

Permutation Test

Toy Example

— Consider all equivalent relabelings
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Permutation Test
Toy Example
* Under H,

— Consider all equivalent relabelings
— Compute all possible statistic values

— Find 95%ile of permutation distribution

8 4 0 4 8



Multiple Tests:
What is “A False Positive”™?

* False Discovery Rate (FDR)

— Expected proportion of false positives among detections
— COII]pU.tC from voxel- , peak- or cluster-wise uncorrected P-values

* Familywise Error Rate (FWE)

— Chance of one or more false positives

FWE(u) = P(One or more false positives | H )
= P(Max voxel above threshold u | /)
Uncorr: Tail area on 1-voxel null — P( max T = U | H 0) FWE-corr: Tail area on max. null

FWE-corrected
thresholds / P-values
SL% just like uncorrected! 570

H, Distribution (1 voxel) H, Maximum Distribution




Controlling FWE: Permutation Test

e Parametric methods

— Assume distribution of
max statistic under null

hypothesis el

Parametric Null Max Distribution

* Nonparametric methods
— Use data to find
distribution of max statistic
under null hypothesis I |||II||||| " >
] [

[T
— Again, any max statistic!  Nonparametric Null Max Distribution




Permutation Test
Smoothed Variance t

e Collect max distribution
— To find threshold that controls FWE

e Consider smoothed variance ¢ statistic

mean difference

Bt ) t-statistic
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Permutation Test
Smoothed Variance t

e Collect max distribution
— To find threshold that controls FWE

e Consider smoothed variance ¢ statistic

mean difference Smoothed

smoothed Varlafwc.e
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Permutation Test
Strengths

* Requires only assumption of exchangeability
— Under Ho, distribution unperturbed by permutation
— Allows us to build permutation distribution

* Subjects are exchangeable

— Under Ho, each subject’ s A/B labels can be
flipped

* fMRI scans not exchangeable under Ho
— Due to temporal autocorrelation



Permutation Test
Limitations

* Computational Intensity
— Analysis repeated for each relabeling
— Not so bad on modern hardware
* No analysis discussed below took more than 2 minutes
* Implementation Generality

— Each experimental design type needs unique code
to generate permutations

* Not so bad for population inference with t-tests



Permutation Test
Example

« fMRI Study of Working Memory Active

— 12 subjects, block design Marshuetz et al (2000)

— Item Recognition

» Active: View five letters, 2s pause,
view probe letter, respond

* Baseline: View XXXXX, 2s pause, Baseline
view Y or N, respond

e Second Level RFX

— Difference 1image, A-B constructed
for each subject

— One sample, smoothed variance 7 test



Permutation Test
Example

Permute!
—212=4,096 ways to flip 12 A/B labels
— For each, note maximum of 7 image

350

300 4

250 4

2 4 6 8 10 12 14
Max t

Permutation Distribution Maximum Intensity Projection
Maximum ¢ Thresholded ¢



Permutation Test
Example

* Compare with Bonferroni
—a=0.05/110,776

* Compare with parametric RFT
— 110,776 2x2x2mm voxels
— 5.1x5.8x6.9mm FWHM smoothness
—462.9 RESELs



58 sig. vox.

— Permutation Test
—— Bonferroni
—.- RF Theory

-

t Threshold

o — C T
1 o 17

13
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uRt' =987
uBonf=9 80
5 sig. vox.

N
.

/E . S B S . 1 (RaEe  SEuSi
// ;’_ A o ’ ! a0
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oo/ 38 sig. vox.

Smoothed Variance t Statistic,
Nonparametric Threshold



Does this Generalize?
RFT vs Bonf. vs Perm.

df

t Threshold

(0.05 Corrected)
RF Bonf Perm

Verbal Fluency
Location Switching

Task Switching
Faces: Main Effect

Faces: Interaction

Item Recognition
Visual Motion

Emotional Pictures
Pain: Warning
Pain: Anticipation

11
11

11
11

12

22
22

4701.32 4259 10.14
11.17 9.0/ 5.83

10.79 10.35 5.10
10.43 9.07 7.92

10.70  9.07 8.26

987 980 7.67
11.07 892 840

8.48 8.41 7.15

593 6.05 4.99
587 6.05 5.05



RFT vs Bonf. vs Perm.

No. Significant Voxels
(0.05 Corrected)

t SmVar t
df | RF Bonf Perm Perm

Verbal Fluency 4 0 0 0 0
Location Switching 9 0 0 158 354
Task Switching 9 4 6 2241 3447
Faces: Main Effect 11| 127 371 917 4088
Faces: Interaction 11 0 0 0 0
Item Recognition 11 5 5 58 378
Visual Motion 11 ] 626 1260 1480 4064
Emotional Pictures 12 0 0 0 {
Pain: Warning 22 | 127 116 221 347
Pain: Anticipation 22 74 95 182 402



Using SNPM to Assess
Reliability with Small Groups

* Consider n=50 group study
— Event-related Odd-Ball paradigm, Kiehl, et al.

* Analyze all 50
— Analyze with SPM and SnPM, find FWE thresh.

* Randomly partition into 5 groups 10

— Analyze each with SPM & SnPM, find FWE
thresh

* Compare reliability of small groups with full
— With and without variance smoothing

Skip



SPM t,,: 5 groups of 10 vs all 50
5% FWE Threshol
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SnPM t. 5 groups of 10 vs. all 50
5% FWE Threshold

T>7.06

28111518 3541434450

SPM({T

49}

451022313336394247 6712172637 38464849 Arbitrary thresh of 9.0



SnPM SmVar t. 5 groups of 10 vs. all 50

28111518 3541434450

451022 31 33 36 39 42 47

5% FWE Threshold

671217 26 37 38 46 48 49

17>9.00
SPM(T, }

Arbitrary thresh of 9.0



Nonparametric Conclusions

* Nonparametric Permutation
— Good when Normality 1s question

— Good with tiny group inference & variance
smoothing

* Come to practical for more!



Advanced issues in fMRI statistics

* Power



Power: 1 Test

Null Distribution Alternative Distribution
~\

e Power: s \ ' /

Probability of rejecting
H, when H, is true
e Must specify:
e Samplesizen
e Levela

(allowed false positive rate) 0.15

e Standard deviation o
(population variability; not StdErr)

e Effect magnitude A

0.35

0.3

0.25

0.2

0.1

0.05

e Last two can be replaced ” 2 0 2 4 6
with
e Effectsize6=A/o



Power: Statistic vs. Data Units

10 subjects
* % BOLD stdevo=0.5

One-Sample T-test...

Reject H, if...

T
> t*
s/v/n — 7

Equivalently, reject H, if...

T >t Xs/\/n

ja = 0.050
:T thresh = 1.83 = ¢*

I
I

z |

5 |
I
I
I

_é 5 1|0
Statistic Value

o = 0.050
|A thresh = 0.29
I

0.5 1 1.5
Percent Change




Power & Effect Magnitude

‘o =0.050

:A thresh = 0.29

10 subjects
% BOLD stdev o =0.5

True %BOLD
A=0.01, 0.2,0.5

Effect Size 6 = A/o
6=0.02,04,1.0

... assuming these are the right numbers! ' Percent Ghange

density

Power = 5.63%

density

‘0 =0.050
|A thresh = 0.29

density

Power = 31.75% Power = 89.75%

0.5 1 1.5 2

0.5 1 1.5 2 -1 -0.5 0

Percent Change Percent Change



Power: 100,000 Tests?

¢ MUItlple tESﬁng (easy part)
— Set a to reflect multiplicity
— If FWE corrected is typically t*=5, then a = 0.00036
e Alternative: 61, 62, 63, vee) 699’999, 6100’000 (hard part)
— Must consider all anticipated alternatives
— These 10 voxels active, and those other 20, and...
— Oh, and don’t forget to specify o,, 0,, 05 ... too!

But see... fMRIpower: http://fmripower.org
PowerMap: http://sourceforge.net/projects/powermap

* In practice...
— Base power on extracted summary values
— Corresponds to a clinical trial’s “primary outcome”
— Come to practical to see the mechanics



fMRIpower tool

http://fmripower.org
for both SPM & FSL

(@] fMRIpower

= Set .gfeat options

.gfeat directory

ackirevlearnigroupiosneg/3rdlev9_tp2_post_corr-tp1 _post_i select gfeat directory

Select lower level cope of interest

copel feat - I

Select top level cope of interest

copel .nii.gz - I

= Power calculation options

group design matrix

arnfgroup/posnegiSrdleviS_tp2_post_corr-tp1_post_incorriDes select design matrix I

ROI mask

zlraichhome/mumford/Matiab CodefNew _guiffmripower _guifaal_21 ettt Al mEak |

Type | error rate
0q

Calculate Exit

l

File Edit View Insert Tools Window Help Colours Clear SPM-Print
Results-Fig TASKS

Power (%) Mean (SD units)

80.1345 0.462834

u 83.7367
0

Crosshair Position

i I -48.5-18.0 4.1
o | 70.355.0 381
Region # 81

Region: Temporal_Sup_L




Probability

a. Power based on b. Power based on

Voxel—Wise Power non-central RFT 1 ROI method

1
Anal ith RFT) 2
nalyses (wit ) Fos o
e
Threshold S 0.6 ~ 0.6
0.8 (FWE-corrected) w g
: o
Z 04 < 0.4
0.6} Under H, Under H = Left
Q
0.4} g 0.2 0.2 Right
o LorR
0.2} 0 0
0 < 10 15 20 10 15 20
2 4 6 8 10 Sample Size Sample Size
Maximum of statistic image
(a) (b) (c) (d)
Effect size Power Sample size Group analysis
Powe rMap (Cohen’s d >0) (N=15) (80% power) (N=15)
tool | | ’ /
E
£
http:// —
sourceforge.net/ 5

projects/powermap

]
Effect size

10 ey o 20 0 m— 15
Sample size T-score

S Hayasaka, AM Peiffer, CE Hugenschmidt, PJ Laurienti. Power and sample size calculation for neuroimaging studies by
non-central random field theory. Neurolmage 37 (2007) 721-730



Power Dangers

Retrospective Power

— Power is a probability of a future true positive

— Can’t take current data (e.g. t=1.3) and say ”What
was my power for this result?”

Nonindependent :

Estimating Effect Sizes "5

— Voodoo correlations!

» Effect size at peak is biased
— Circularly defined as the best effect

— Must use independent ROls

* Independent data, contrasts
* Anatomical ROI S

Frequency
(number of significant correlations reported)

0 01 02 03 04 05 06 07 08 09 1
Absolute correlation value

Puzzlingly high correlations in fMRI studies of emotion, personality, and social cognition. Persp. on Psych. Science, 4, 274-290



Power & Replicability

* | got a significant result, who cares about
power!?

e Law of Small Numbers aka “winner's curse”

— Small studies over-estimate effect size

[1 256 meta analyses for a dichotomous effect
(odds ratio) from Cochrane database

[0 Low N studies: At the best

M Have low power
l.e. less likely to be positive

M But if are positive, likely due to
M Randomly high effect or
M Randomly small variance

[J Low power = hard to replicate! Samp|e Size
(Log of Total N in Meta Analysis)

0.4—

Effect Size
(Log Odds Ratio)

loannidis (2008). “Why most discovered true associations are inflated.” Epidemiology, 19(5), 640-8.



Effect Size

Low N studies: At the worst

e Suppressed studies & Biased effects
— P>0.05 not published

— Biases that afflict small studies more than large
studies

0.8+

2 NG

© ©

X oo Ny

2 o

3 83

04—~ u= 04—
g T
= =
Sample Size Sample Size

(Log of Total N in Meta Analysis) (Log of Total N in Meta Analysis)
File drawer problem Bias

(Unpublished non-significant studies) (Fishing or Vibration Effects)



Vibration Effects

= Sloppy or nonexistent analysis protocols

“Try voxel-wise whole brain, then cluster-wise, then if not getting good
results, look for subjects with bad movement, if still nothing, maybe try a
global signal regressor; if still nothing do SVC for frontal lobe, if not,
then try DLPFC (probably only right side), if still nothing, will look in
literature for xyz coordinates near my activation, use spherical SVC...

surely that’ll work!”

— You stop when you get the result you expect
— These “vibrations” can only lead to inflated false
positives
* Afflicts well-intended researchers

— Multitude of preprocessing/modelling choices

* Linear vs. non-linear alignment
e Canonical HRF? Derivatives? FLOBS?



Power failure: Button et al.

¢ Meta'AnalySiS of (non-imaging) Neuroscience MEta'Analyses

 Recorded median power per meta-analysis
— Median median power 21%

16 -
14 —30
17 i 50% of all
10 neuroscience
20 studies have
= 8 - N .
- 15 at most a 1-in-5
6 1 L 10 chance of
% replicating! 7
2 B
0 0

S B O S D D S S S 8
Q/\’ x/% x/q) \,)‘ x/c) x’(o x/« x/oo x/o’ /\9
N Y K G Y A g

0;\,
Power (%)
Button, et al. (2013). Power failure: why small sample size undermines the reliability of neuroscience. Nat. Rev. Neuros, 14(5), 365-76.



Button et al’s Recommendations

* Do power calculations
* Disclose methods & findings transparently

* Pre-register your study protocol and analysis
plan

 Make study materials and data available
— Check out http://neurovault.org !

 Work collaboratively to increase power and
replicate findings

Button, et al. (2013). Power failure: why small sample size undermines the reliability of neuroscience. Nat. Rev. Neuros, 14(5), 365-76.



Power Conclusions

* Power = Replicability
— Best gauge on whether you’ll find the effect again

* Whole image-wise power possible
— With either fMRIpower & powermap

 “Targeted outcome” power practical
— Based on effect size at one location
— But be aware of circularity issues



Advanced issues in fMRI statistics

 Meta-Analysis



Overview

Non-imaging meta-analysis
Menu of meta-analysis methods
— ROl’s, IBMA, CBMA

CBMA details

— Kernel-based methods — What’s in common
— m/ALE, M/KDA — What’s different

Limitations & Thoughts



Stages Of (non-imaging) MEta-Ana|ySIS

Define review's specific objectives.
Specify eligibility criteria.

ldentify all eligible studies.

Collect and validate data rigorously.

Display effects for each study, with measures of
precision.

Compute average effect, random effects std err

$3 7. Check for publication bias, conduct sensitivity
analyses.

s Wi

o

Jones, D. R. (1995). Meta-analysis: weighing the evidence. Statistics in Medicine, 14(2), 137-49.



MEthOdS fOr (non-imaging) Meta'AnalyS|S (1)

e P-value (or Z-value) combining
— Fishers (= average —log P)
— Stouffers (= average 7)

— Used only as method of last resort
* Based on significance, not effects in real units
* Differing n will induce heterogeneity (cummings, 2004)

* Fixed effects model
— Requires effect estimates and standard errors
e E.g. Mean survival (days), and standard error of mean

— Gives weighted average of effects
* Weights based on per-study standard errors

— Neglects inter-study variation

Cummings (2004). Meta-analysis based on standardized effects is unreliable. Archives of Pediatrics & Adolescent
Medicine, 158(6), 595-7.



MEthOdS fOr (non-imaging) Meta'AnalyS|S (2)

* Random effects model
— Requires effect estimates and standard errors
— Gives weighted average of effect

* Weights based on per-study standard errors and
inter-study variation

— Accounts for inter-study variation
* Meta regression
— Account for study-level regressors

— Fixed or random effects



Neuroimaging Meta-Analysis
Approaches (1)

* Region of Interest
— Traditional Meta-Analysis, on mean %BOLD & stderr
— Almost impossible to do

* ROI-based results rare (exception: PET)
» Different ROIs used by different authors

e Peak %BOLD useless, due to voodoo bias
— Peak is overly-optimistic estimate of %BOLD in ROI

True Estimated

> \ / %BOLD | %BOLD

>
MNI x-axis



Neuroimaging Meta-Analysis

Approaches (2)
* |Intensity-Based Meta-Analysis (IBMA)
— With P/T/Z Images only

* Only allows Fishers/Stouffers

— With contrast images only
* Only allows random-effects model without weights
— Can’t weight by sample size!
— With contrast and standard error images
* SPM’s spom_mfx and FSL’s FEAT/FLAME:

— 2"d-level : Combining subjects
— 3rd_Jevel : Combining studies

* Allows meta-regression Best practice ©
— But image data rarely shared

Bad practice ®



Neuroimaging Meta-Analysis
Approaches (3)

e Coordinate-Based Meta-Analysis (CBMA)
— X,Y,z locations only
» Activation Likelihood Estimation (ALE)

Turkeltaub et al. (2002). Meta-analysis of the functional neuroanatomy of single-word reading: method and
validation. Neurolmage, 16(3), 765—-780.

Eickhoff et al. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a

random-effects approach based on empirical estimates of spatial uncertainty. Human Brain Mapping, 30(9), 2907-26.
Eickhoff et al. (2012). Activation likelihood estimation meta-analysis revisited. Neurolmage, 59(3), 2349-61

e Multilevel Kernel Density Analysis (MKDA)

Wager et al. (2004). Neuroimaging studies of shifting attention: a meta-analysis. Neurolmage 22 (4), 1679-1693.

Kober et al. (2008). Functional grouping and cortical-subcortical interactions in emotion: a meta-analysis of
neuroimaging studies. Neurolmage, 42(2), 998-1031.

— X,¥,z and Z-value
* Signed Difference Mapping (SDM)

Radua & Mataix-Cols (2009). Voxel-wise meta-analysis of grey matter changes in obsessive-compulsive disorder.
British Journal of Psychiatry, 195:391-400.

Costafreda et al. (2009). A parametric approach to voxel- based meta-analysis. Neurolmage, 46(1):115-122.



Peak coordinates Kernel convolution

CMBA Kernel Methods = =" s

=
o0
w2
L e
o‘

* Create study maps &) [P Yy e
— Each focus is replaced with kernel '\
* Important details on kernel overlap o -
Wager et al. (2007). SCAN, 2(2), 150-8.
* Create meta maps
. Peak density or
— Study maps combined ko
* Inference

— Traditional voxel-wise or cluster-wise
* Voxel-wise — FDR or FWE
e Cluster-wise — FWE

— Monte Carlo test
* H,: no consistency over studies

* Randomly place each study’s foci, recreate meta maps
* Not actually a permutation test (see Besag & biggle (1977))

Significant results

Besag & Diggle (1977). Simple Monte Carlo tests for spatial pattern. JRSS C (Applied Statistics), 26(3), 327-333.



Kernel Methods History — m/ALE

ALE — Activation Likelihood Estimation

ALE per-study map
(Turkeltaub et al., 2002)
Study 1 . Study 1 o oo
Study 2 ® ® Study 2 ® ®
Study 3 ® Study 3 ®
kernel FHWM ALE map

ALE interpretation for single focus ( @ )

Probability of observing a focus at that location ( | )
ALE combining

Probability of union of independent events...

ALE(py,P,) =P+ Py = PiXP,

ALE(py,p2,P3) = P1+ P+ P3 = P1XPy— P1XP3— PoXP3 + P1XP,%Ps
ALE interpretation:

Probability of observing one or more foci at a given location
based on a model of Gaussian spread with FWHM

oV



Kernel Methods History — m/ALE

ALE — Activation Likelihood Estimation

ALE per-study map
(Turkeltaub et al., 2002)
Study 1 . Study 1 o oo
Study 2 ® ® Study 2 ® 4
Study 3 ® Study 3 ®
kernel FHWM ALE map

Problem with first ALE

Single study could dominate, if lots one has lots of points
Modified ALE (Eickhoff et al., 2009; Eickhoff et al., 2012)

Revised Monte Carlo test accounts for studies

Fix foci, randomly sample each map

Adapt kernel size f to study sample size

Voxel-wise test — no Monte Carlo!

Cluster-wise test — still requires Monte Carlo



Kernel Methods History — M/KDA

KDA — Kernel Density Analysis
(Wager et al., 2004)

Study 1 ¢ ' i
Study 2 — —
Study 3 —

kernel radius r
Same problem with individual

profligate studies

MKDA (Kober et al., 2008)
Truncated study maps
Monte Carlo test

Moves clusters, not
individual foci

MKDA (unweighted) INnterpretation:

KDA per-study map

Study 1 oo

Study 2 ® o
Study 3 ®

KDA map — average of study maps

MKDA — Multilevel Kernel Density Analysis
per-study map

Study 1 oo
Study 2 — & — &
Study 3 —

MKDA map — weighted average of study maps
MKDA |

Proportion of studies having one or more foci within distance r



CBMA Limitations

e Effect size
— Non-imaging MA is all about effect size, Cl’s

— What is the effect size?
 MKDA — Proportion of study result in neighborhood
* ALE — Probability at individual voxel one or foci

— Standard errors? ClI’s?
— Power/sensitivity
e 5/10 studies — Great!
e 5/100 studies — Not great? Or subtle evidence?

e Fixed vs. Random Effects?



Distribution of each study’s estimated effect

IBMA ﬂ
Random Effects? A\ "
Study 1
* An effect that Study 2
generalizes to o
the population ’
studied a4
» Significance S
relative to Study 6
between-study
variation Distribqtion of »
population effect
% BOLD




Reverse Inference & Brain Imaging

» Politics study from 2007 SNEXT”lzéoi

— Voters viewed images of
Democratic candidates (N=20)

— Subset that disliked Clinton:

 “...exhibited significant activity in the
anterior cingulate cortex, an
emotional center”..., activated when
one “feels compelled to act in two
different ways but must choose one.” = CLINTON

1. DEMOCRAT REPUBLICAN INDEPENDENT

Tacoboni, et al., “This is your brain on politics”. OP-ED, The New York Times, Nov. 11, 2007



Reverse Inference & Brain Imaging

» Logic
— Emotion conflict resolution task
=» Anterior Cingulate activation

known from the literature

2. CLINTON

— Hillary Clinton
=» Anterior Cingulate activation

observed in this experiment

Tacoboni, et al., The New York Times,
Nov. 11,2007

— Ergo

=>»Hillary Clinton induces emotional conflict

=» Faulty Reverse Inference

— High P(A.C. Act. | Emot. Conf. ) doesn’t imply
high P(Emot. Conf. | A.C. Act.) !



Reverse Inference: Correctly!

* Bayes Rule
— Cognitive Domain C, Activation A
P(A|C=c) P(C=c)
P(C=c|A) =
2.« P(A|C=c*)P(C=c")

summation over all cognitive domains!

» Can we find "P(Emot. Conflict | ACC Act.)™?

— Need to run 100’s of experiments!
— Or, use meta analysis!

— But best Neuroimaging Meta Analysis databases
are still limited
« BrainMap.org has 2,355 studies (started in 1988)
 Pubmed finds 21,017 refs “fMRI” in title/abstract




Neurosynth

Term-based Related studies Automated coordinate Meta-analysis
search Mechanisms of Directed | extraction
An fMRI Investigation of l
% & Placebo-Induced Changes in fMRI x Y z stUdy
Pain"=Pp| [{ "meinr | ——)p 2318 45 1 —)
] ERmomesTL. 19 3 12 1
o -40 0 -16 1
- 35 -41 29 2
= 2O 1 B35 D
4393 studies (in < 12 months!) P(PainlActivation)
B  Forward inference Reverse inference
Paln Worklng Memory?
Emotion?
Pain?
b
C Classification
Working mem. Emotion Pain
—>» “Pain’

P=78%  P=64% P=87%

Select high\est probability
Yarkoni, Poldrack, Nichols, Essen, & Wager (2011). Large-scale automated synthesis of

human functional neuroimaging data. Nature Methods, 8(8), 665-670. www.neurosynth.org




Neurosynth Methods

17 Neuroscience-focused journals used

— Biological Psychiatry, Brain, Brain and Cognition, Brain and Language,
Brain Research, Cerebral Cortex, Cognitive Brain Research, Cortex,
European Journal of Neuroscience, Human Brain Mapping, Journal of
Neurophysiology, Journal of Neuroscience, Neurolmage, NeuroL etters,
Neuron, Neuropsychologia, & Pain.

Tagging
— Each article ‘tagged’ with psychological terms
— Scored as high frequency (>1/1000 words) Or not

Coordinate harvesting
— Tables parsed for x,y,z coordinates

Not exhaustive, but already massive
— 4,400+ studies, 145,000+ foci



What about Anterior Cingulate?

¢ It,S Probability of activation over all studies

always
there!

* Finally, can do real reverse inference...



Working
Memory

Emotion

Previous meta-analyses Automated meta-analysis

Forward Inference Reverse Inference
B (P(ActlTerm)) C (P(TermlAct))

0 PEActITermi 0.4




Location of each study’s foci

What is a
Random Effect? -

Study 1 L

* CBMA e

— An effect that
generalizes to the : ;
population studied? Study 4 .

* 5/10 signif.: OK? : -
e 5/100 signif.: OK!?

— Significance relative
to between-study
variation?

Study 2 ©

Study 3 o

Study 5 o

Study 6 e

—

Intensity Function§
* Significance based e.g. ALE / s .
on null of random —_— - 1 1\

distribution

< MNI x-axis >




Location of each study’s foci

What is a
Random Effect? A\ "

Study 1 ;
* Bayesian T J\
Hierarchical | o J\

Marked Spatial J \
independent Study 4 .
Cluster Process Study 5 J
— Explicitly Study 6 J.\ .
parameterizes B

intra- and inter-

o Intensity Function%
study variation /:

Kang, Johnson, Nichols, & Wage (2011). Meta Analysis of Functional
Neuroimaging Data via Bayesian Spatial Point Processes. Journal of MNI x-axis
the American Statistical Association, 106(493), 124-134. <€ >




CBMA Sensitivity analyses

Executive working memory: Adapted Galbraith plots

' No bias Small-sample B No bias Reporting bias Null result
A reporting bias | =

s
e /-scores M |<>_

12
S h O U | d #-Random effects

10" Lv-Fixed/Conjunction

fall to ; iy
zero with  ~. i

® Random effects
V Fixed/Conjunction

omn @ m W e

Z-score
(0)]

D L e )

Non-active

: 2 ® Lowess moving average
sample size , Lt L
1 2 3 4 Study sample size

sqrt(sample size)

* Meta Diagnhostics

— Various plots assess whether
expected behavior occurs

T S W

Non-active

0 10 20 30
Study sample size

Wager et al. (2009). Evaluating the consistency and specificity of neuroimaging data using meta-analysis. Neurolmage,
45(1S1), 210-221.



. Emotion Meta Analysis from 154 studies
CBMA File Right Amygdala activation
: Chance: whole-brain FWE threshold
Drawer Bias?

Chance: small-volume FWE threshold

Chance: half of all studies
using P<0.001 uncorrected

e What about
“P<0.001

uncorre Cted” Anger (26 studies)
b | dsS ? Disgust (28 studies)

Chance: all studies

! using P<0.001 uncorr.
!

|

i

Fear (43 studies)

|

* Forrest plot

— MKDA values for
right amygdala

A

M

Happy (24 studies)

Sad (33 studies)

— Can explore All (154 studies)
different 0 20 10 60 80
- P t of studi ti foci
explanations for within 10mm of right amygdala
the effect

T. Nichols



Conclusions

* |IBMA
— Would be great, rich tools available

* CBMA

— 2+ tools available

— Still lots of work to deliver best (statistical)
practice to inferences



