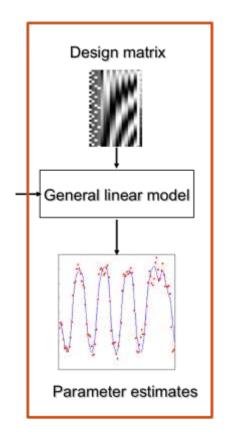
The General Linear Model (GLM)

Dr. Frederike Petzschner

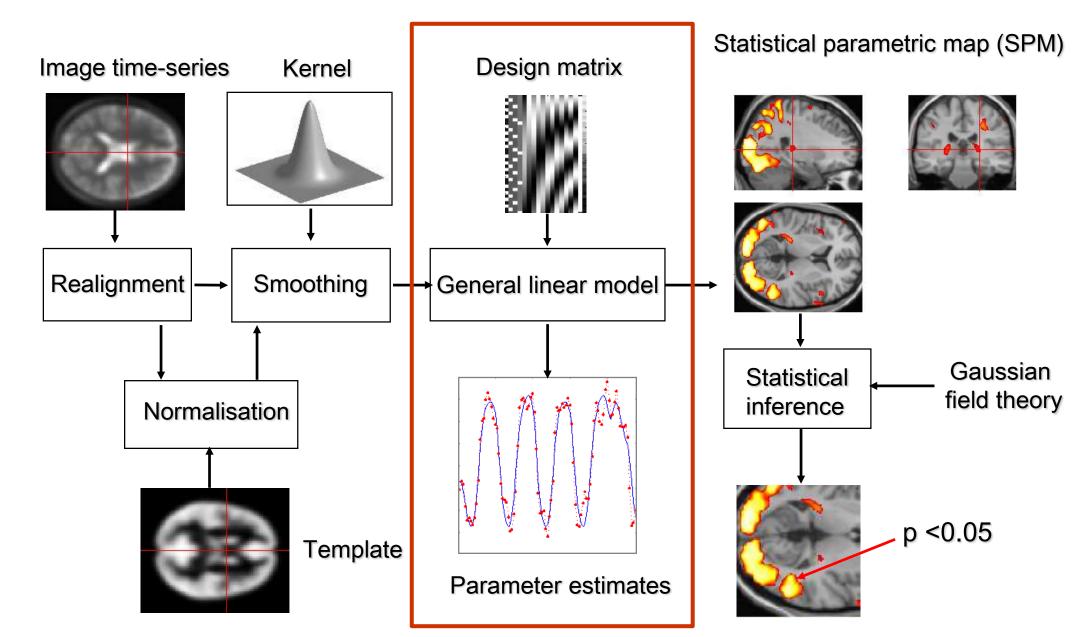
Translational Neuromodeling Unit (TNU)
Institute for Biomedical Engineering, University of Zurich & ETH Zurich

With many thanks for slides & images to:

FIL Methods group, Virginia Flanagin and Klaas Enno Stephan



Overview of SPM



Research Question:

Where in the brain do we represent listening to sounds?

Image a very simple experiment...

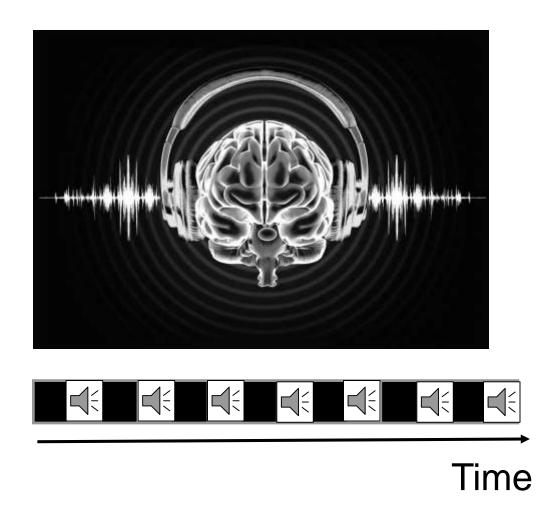
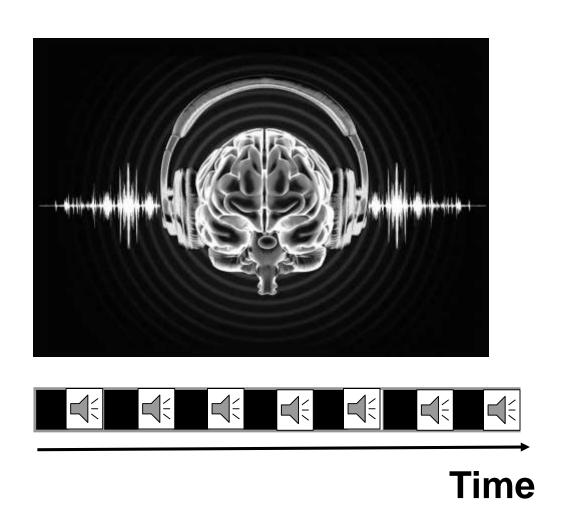


Image a very simple experiment...



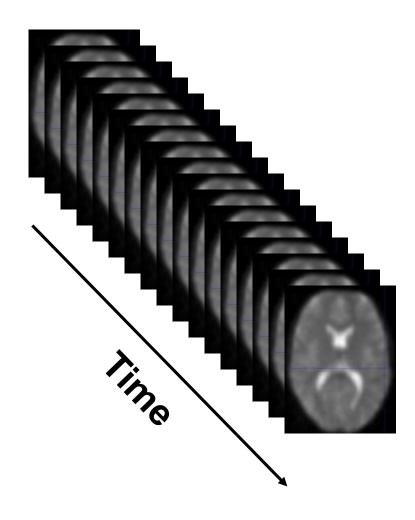


Image a very simple experiment...

Question: Is there a change in the BOLD response between listening and rest?

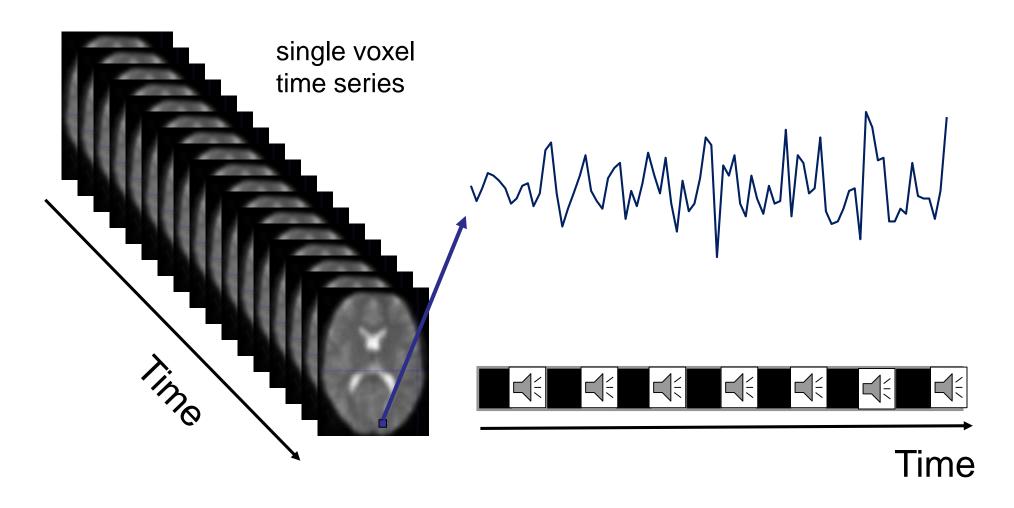
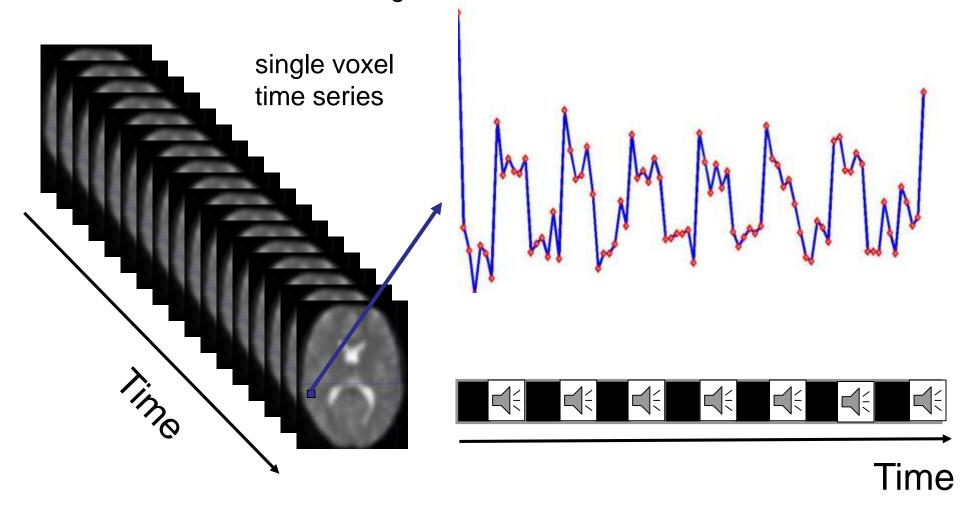
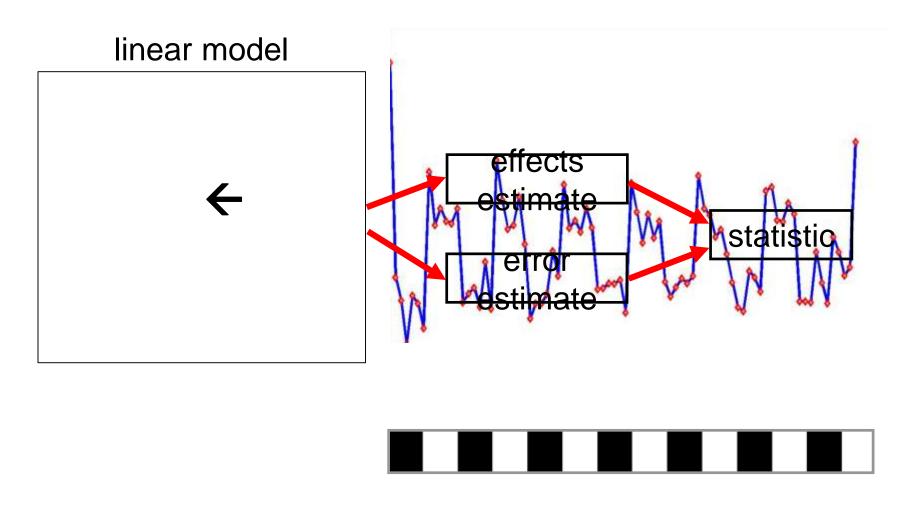


Image a very simple experiment... Question: Is there a change in the BOLD response

between listening and rest?



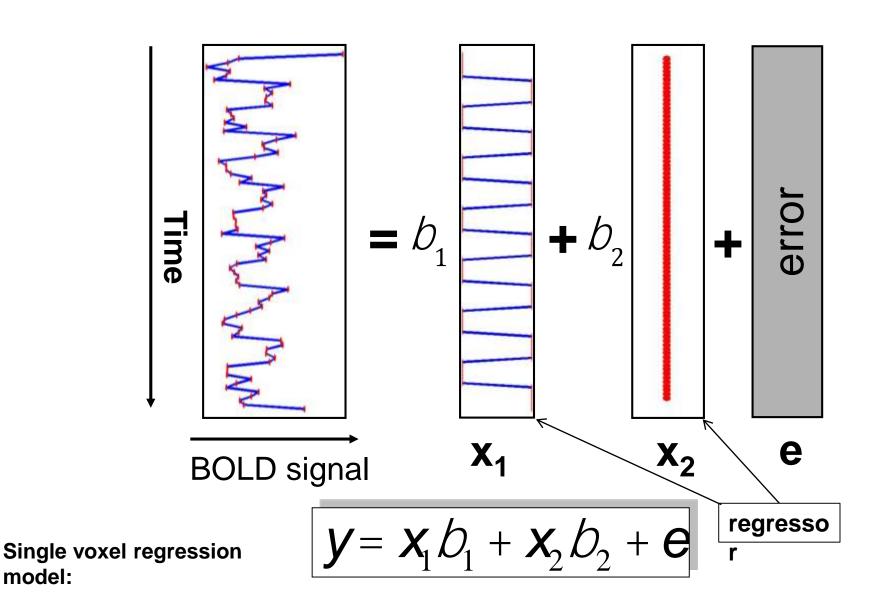
You need a model of your data...



Explain your data...

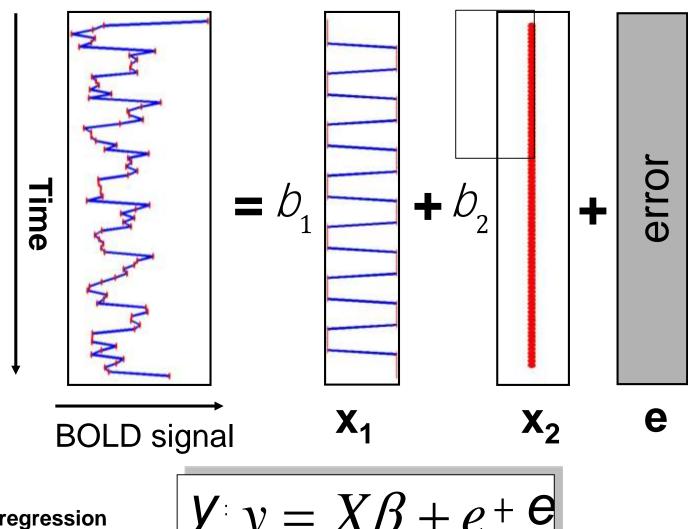
model:

as a combination of experimental manipulation, confounds and errors



Explain your data...

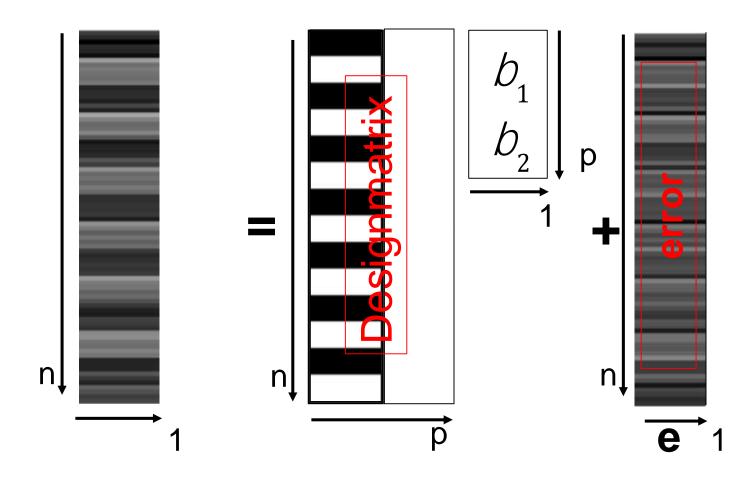
as a combination of experimental manipulation, confounds and errors



Single voxel regression model:

$$y = X\beta + e + e$$

The black and white version in SPM



n: number of scans

p: number of regressors

$$y = X\beta + e$$

Model assumptions

Designmatrix

The design matrix embodies all available knowledge about experimentally controlled factors and potential confounds.

→ Talk: Experimental Design Wed 9:45 – 10:45

error

You want to estimate your parameters such that you minimize:

 $\mathop{\tilde{a}}^{N} e_{t}^{r}$

This can be done using an **Ordinary least squares** estimation (OLS) assuming an i.i.d. error

error

GLM assumes identical and independently distributed errors

i.i.d. = error covariance is a scalar multiple of the identity Θ at ri $\mathbb{N}(0, S^2)$

$$Cov(e) = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} t1 \qquad Cov(e) = \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix} \qquad Cov(e) = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

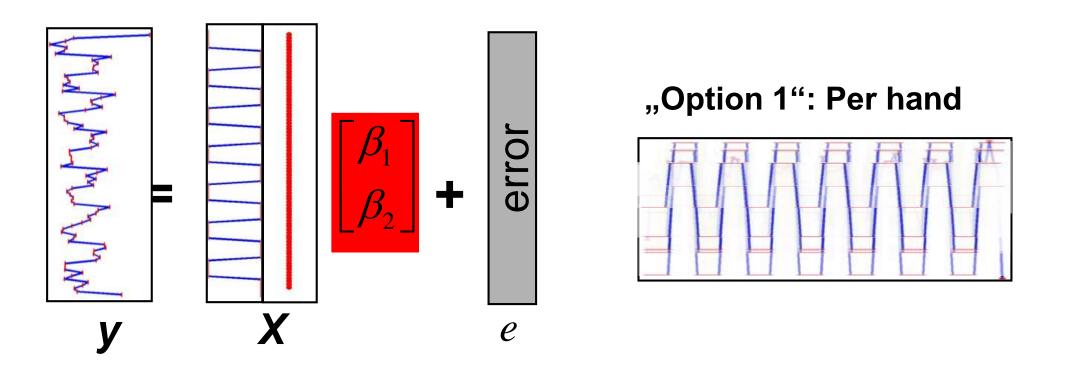
non-identity

$$Cov(e) = \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix}$$

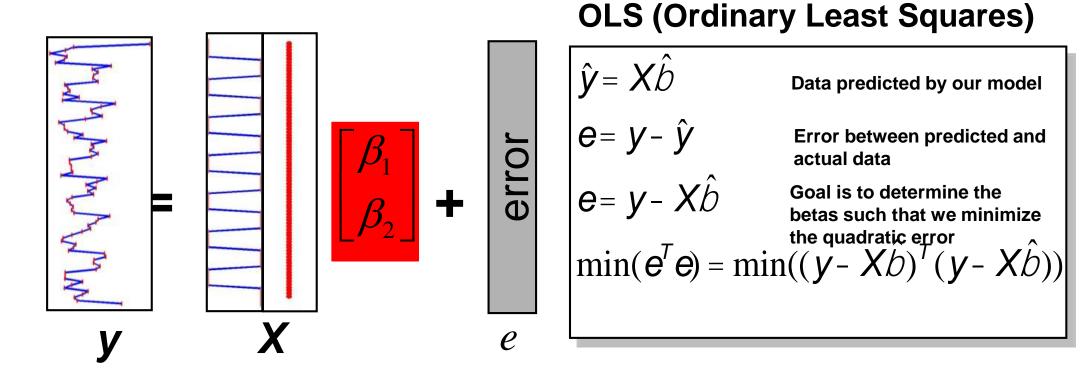
non-independence

$$Cov(e) = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

How to fit the model and estimate the parameters?



How to fit the model and estimate the parameters?



$$e^{T}e=(y-X\hat{b})^{T}(y-X\hat{b})$$

The goal is to minimize the quadratic error between data and model

$$e^{T}e=(y-X\hat{b})^{T}(y-X\hat{b})$$

$$e^T e = (y^T - \hat{b}^T X^T)(y - X\hat{b})$$

The goal is to minimize the quadratic error between data and model

$$e^{T}e=(y-X\hat{b})^{T}(y-X\hat{b})$$

$$e^T e = (y^T - \hat{b}^T X^T)(y - X\hat{b})$$

$$e^T e = y^T y - y^T X \hat{b} - \hat{b}^T X^T y + \hat{b}^T X^T X \hat{b}$$

The goal is to minimize the quadratic error between data and model

This is a scalar and the transpose of a scalar is a scalar \odot

$$e^{T}e = (y - X\hat{b})^{T}(y - X\hat{b})$$

$$e^{T}e = (y^{T} - \hat{b}^{T}X^{T})(y - X\hat{b})$$

$$e^{T}e = y^{T}y - y^{T}X\hat{b} - \hat{b}^{T}X^{T}y + \hat{b}^{T}X^{T}X\hat{b}$$

$$e^{T}e = y^{T}y - 2\hat{b}^{T}X^{T}y + \hat{b}^{T}X^{T}X\hat{b}$$

The goal is to minimize the quadratic error between data and model

This is a scalar and the transpose of a scalar is a scalar \odot

$$e^{T}e=(y-X\hat{b})^{T}(y-X\hat{b})$$

$$e^{T}e = (y^{T} - \hat{b}^{T}X^{T})(y - X\hat{b})$$

$$e^{T}e = y^{T}y - y^{T}X\hat{b} - \hat{b}^{T}X^{T}y + \hat{b}^{T}X^{T}X\hat{b}$$

$$e^T e = y^T y - 2\hat{b}^T X^T y + \hat{b}^T X^T X \hat{b}$$

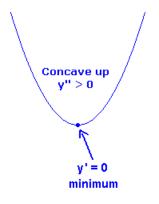
$$\frac{\P e^T e}{\P \hat{b}} = -2X^T y + 2X^T X \hat{b}$$

$$0 = -2X^T y + 2X^T X \hat{b}$$

The goal is to minimize the quadratic error between data and model

This is a scalar and the transpose of a scalar is a scalar ©

You find the extremum of a function by taking its derivative and setting it to zero



$$e^{T}e=(y-X\hat{b})^{T}(y-X\hat{b})$$

$$e^{T}e = (y^{T} - \hat{b}^{T}X^{T})(y - X\hat{b})$$

$$e^T e = y^T y - y^T X \hat{b} - \hat{b}^T X^T y + \hat{b}^T X^T X \hat{b}$$

$$e^T e = y^T y - 2\hat{b}^T X^T y + \hat{b}^T X^T X \hat{b}$$

$$\frac{\P e^T e}{\P \hat{b}} = -2X^T y + 2X^T X \hat{b}$$

$$0 = -2X^T y + 2X^T X \hat{b}$$

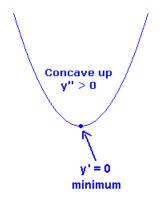
$$\hat{D} = (X^T X)^{-1} X^T y$$

SOLUTION: OLS of the Parameters

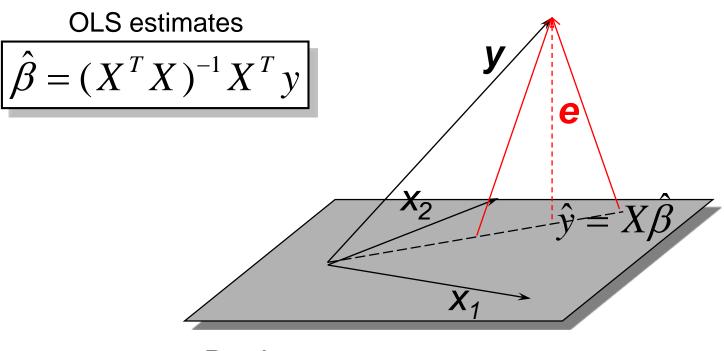
The goal is to minimize the quadratic error between data and model

This is a scalar and the transpose of a scalar is a scalar ©

You find the extremum of a function by taking its derivative and setting it to zero

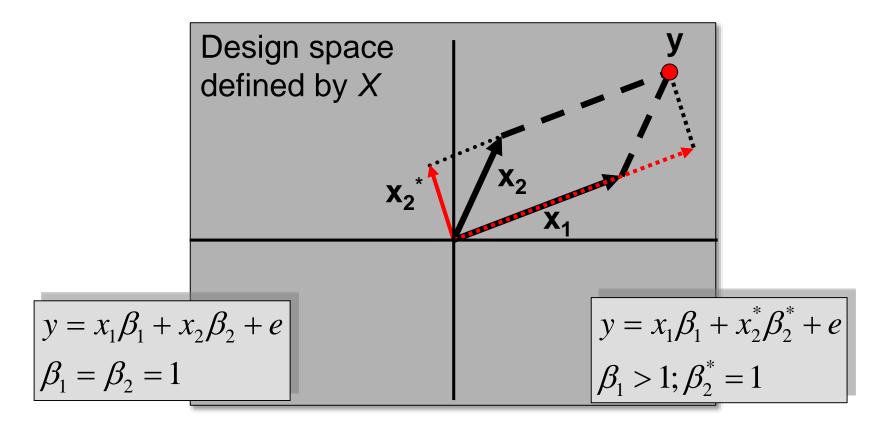


A geometric perspective on the GLM



Design space defined by *X*

Correlated and orthogonal regressors

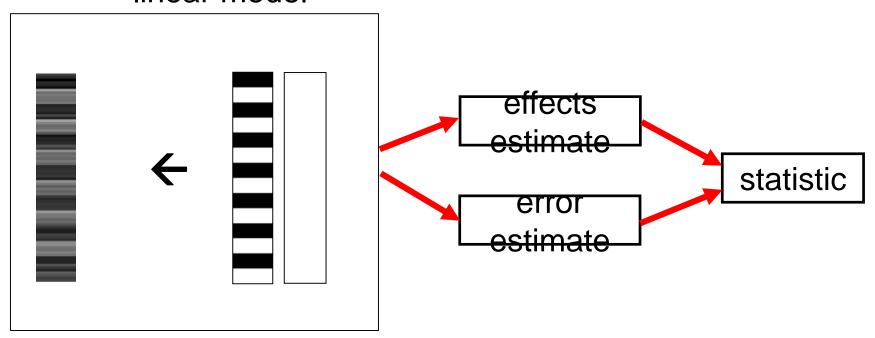


Correlated regressors = explained variance is shared between regressors

When x_2 is orthogonalized with regard to x_1 , only the parameter estimate for x_1 changes, not that for x_2 !

We are nearly there...

linear model



...but we are dealing with fMRI data

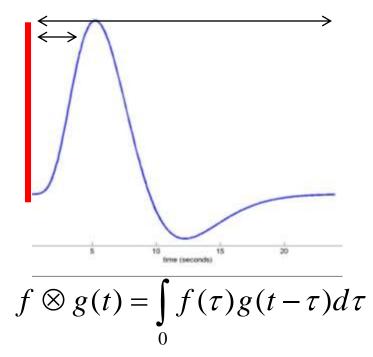
What are the problems?

1. BOLD responses have a delayed and dispersed form.

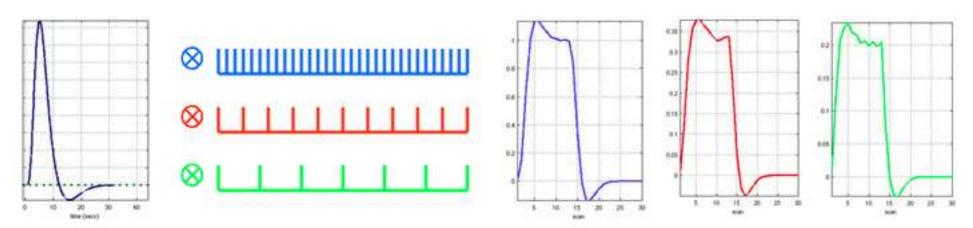
2. The BOLD signal includes substantial amounts of low-frequency noise.

3. The data are serially correlated (temporally autocorrelated). This violates the assumptions of the noise model in the GLM

Problem 1: Shape of BOLD response

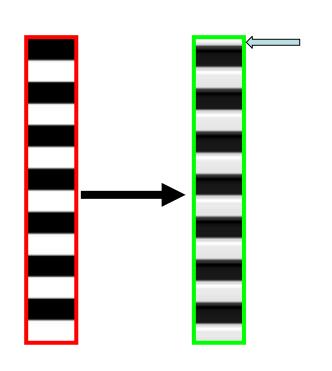


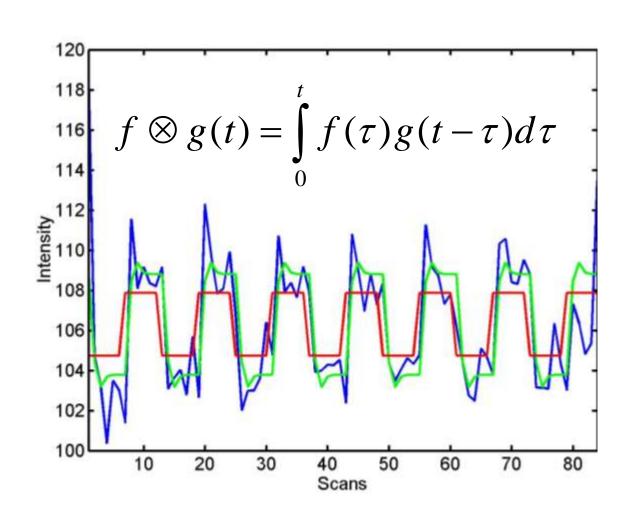
The response of a linear time-invariant (LTI) system is the convolution of the input with the system's response to an impulse (delta function).



Solution: Convolution model of the BOLD response

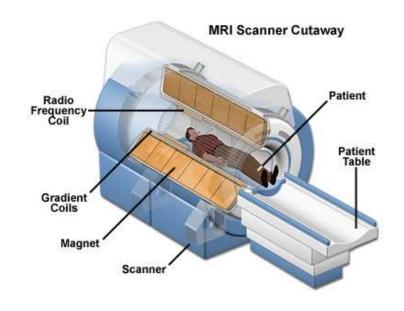
expected BOLD response
= input function x impulse
response function (HRF)

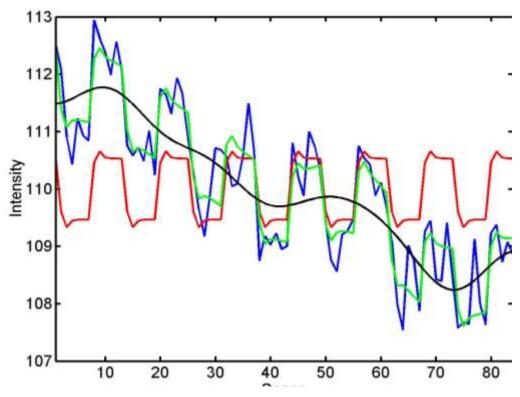




blue = data
green = predicted response, taking convolved with HRF
red = predicted response, NOT taking into account the HRF

Problem 2: Low frequency noise





blue = data

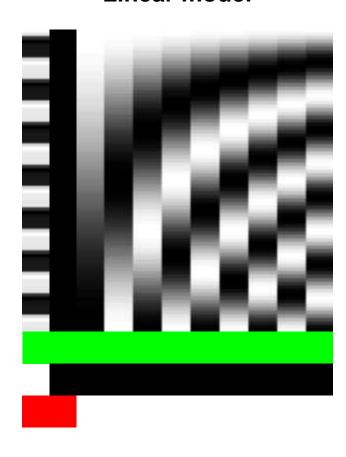
black = mean + low-frequency drift

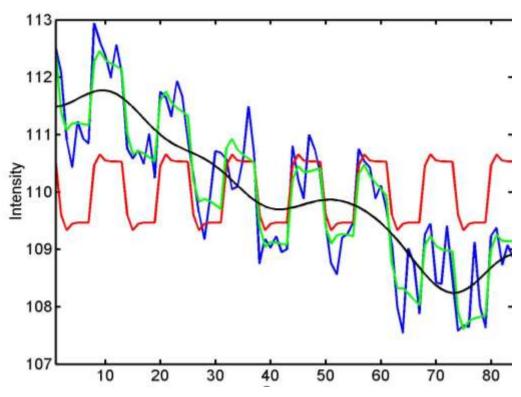
green = predicted response, taking into account lowfrequency drift

red = predicted response, NOT taking into account low-frequency drift

Problem 2: Low frequency noise

Linear model





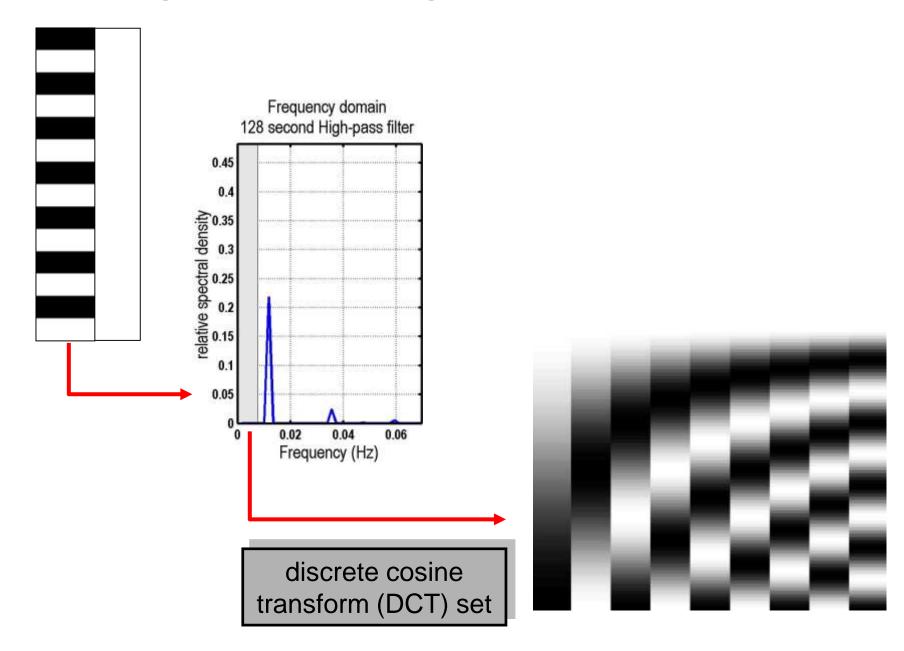
blue = data

black = mean + low-frequency drift

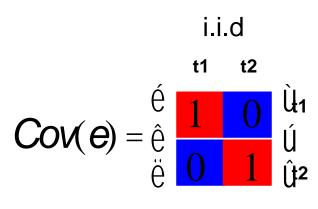
green = predicted response, taking into account lowfrequency drift

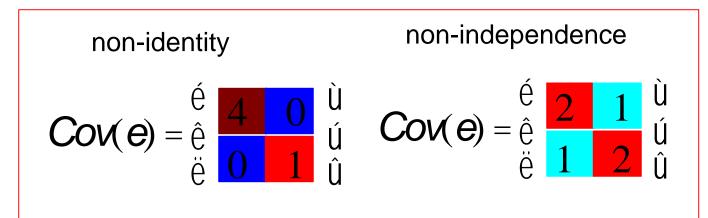
red = predicted response, NOT taking into account low-frequency drift

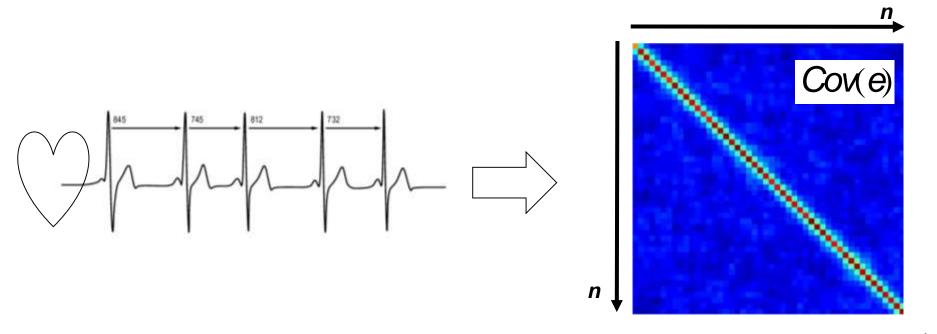
Solution 2: High pass filtering



Problem 3: Serial correlations

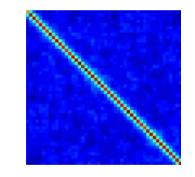






Problem 3: Serial correlations

Transform the signal into a space where the error is iid



This is i.i.d
$$Wy = WX\beta + We$$

Pre-whitening:

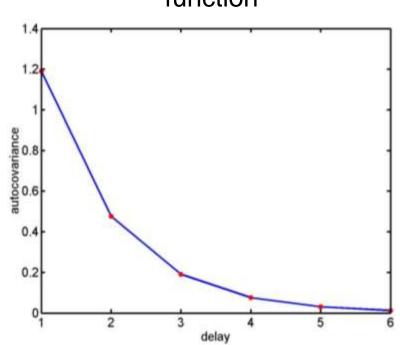
- 1. Use an enhanced noise model with multiple error covariance components, i.e. $e \sim N(0, \sigma^2 V)$ instead of $e \sim N(0, \sigma^2 I)$.
- 2. Use estimated serial correlation to specify filter matrix *W* for whitening the data.

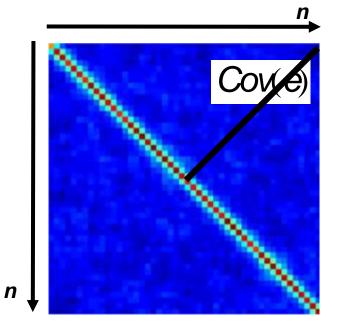
Problem 3: How to find W → Model the noise

$$e_t = ae_{t-1} + \varepsilon_t$$
 with $\varepsilon_t \sim N(0, \sigma^2)$

1st order autoregressive process: AR(1)

autocovariance function





Model the noise: Multiple covariance components

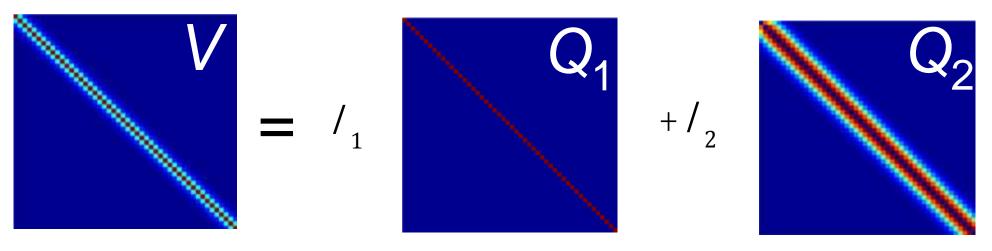
$$e \sim N(0, \sigma^2 V)$$

enhanced noise model

$$V \propto Cov(e)$$

$$V = \sum \lambda_i Q_i$$

error covariance components Q and hyperparameters



Estimation of hyperparameters with EM (expectation maximisation) or ReML (restricted maximum likelihood).

How do we define W?

Enhanced noise model

$$e \sim N(0, \sigma^2 V)$$

 Remember linear transform for Gaussians

$$x \sim N(\mu, \sigma^2), y = ax$$

$$\Rightarrow y \sim N(a\mu, a^2 \sigma^2)$$

 Choose W such that error covariance becomes spherical

$$We \sim N(0, \sigma^2 W^2 V)$$

$$\Rightarrow W^2V = I$$

$$\implies W = V^{-1/2}$$

Conclusion: W is a simple function of V

$$Wy = WX\beta + We$$

$$y_s = X_s b + e_s$$

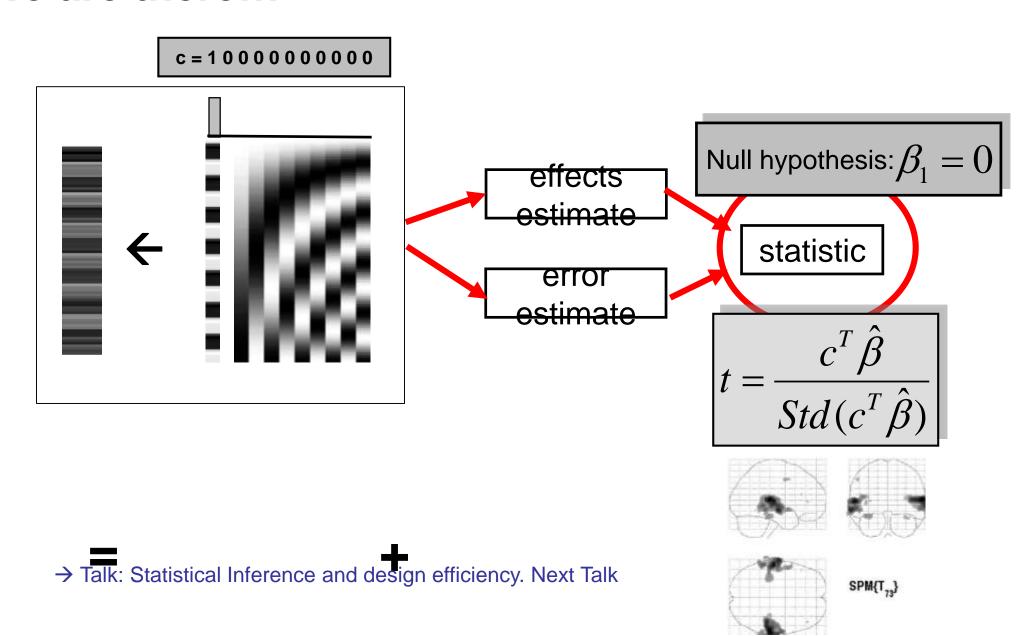
We are there...

- the GLM models the effect of your experimental manipulation on the acquired data
- GLM includes all known experimental effects and confounds
- estimates effects an errors on a voxel-by-voxel basis

Because we are dealing with fMRI data there are a number of problems we need to take care of:

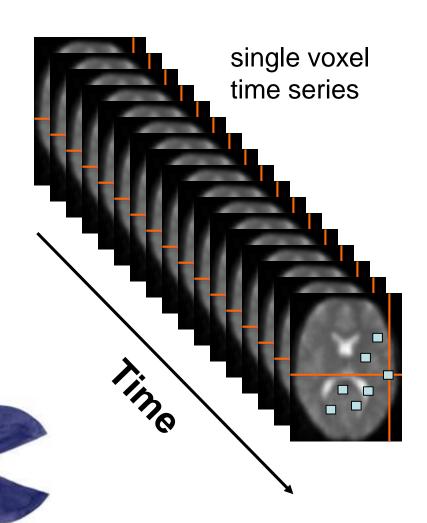
- Convolution with a canonical HRF
- High-pass filtering to account for low-frequency drifts
- Estimation of multiple variance components (e.g. to account for serial correlations)

We are there...



So far we have looked at a single voxel...

- Mass-univariate approach: GLM applied to > 100,000 voxels
- Threshold of p<0.05 more than 5000 voxels significant by chance!



- Massive problem with multiple comparisons!
- Solution: Gaussian random field theory

Outlook: further challenges

- correction for multiple comparisons
- → Talk: Multiple Comparisons Wed 8:30 9:30

- variability in the HRF across voxels
- -10:45

→ Talk: Experimental Design Wed 9:45

limitations of frequentist statistics

→ Talk: entire Friday

GLM ignores interactions among voxels

→ Talk: Multivariate Analysis Thu 12:30

-13:30

Thank you for listening!



- Friston, Ashburner, Kiebel, Nichols, Penny (2007)
 Statistical Parametric Mapping: The Analysis of Functional Brain Images. Elsevier.
- Christensen R (1996) Plane Answers to Complex Questions: The Theory of Linear Models. Springer.
- Friston KJ et al. (1995) Statistical parametric maps in functional imaging: a
 general linear approach. Human Brain Mapping 2: 189-210