The General Linear Model (GLM)
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Overview of SPM

Statistical parametric map (SPM)
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Research Question:

Where In the brain do we represent listening to sounds?



Image a very simple experiment...
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Image a very simple experiment...
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Image a very simple experiment...

Question: Is there a change in the BOLD response
between listening and rest?

single voxel
time series
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Image a very simple experiment...

Question: Is there a change in the BOLD response
between listening and rest?

single voxel
time series
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You need a model of your data...

linear model
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Explain your data...

as a combination of experimental manipulation, confounds and errors
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model:




Explain your data...
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The black and white version in SPM
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n: number of scans — X _I_ e
p: number of regressors



Model assumptions

Designmatrix

error

The design matrix embodies all available knowledge
about experimentally controlled factors and potential

confounds.
- Talk: Experimental Design Wed 9:45 — 10:45

You want to estimate your parameters such that you
minimize:
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This can be done using an Ordinary least squares
estimation (OLS) assuming an i.i.d. error



error

GLM assumes identical and
Independently distributed
errors

I.1.d. = error covariance is a scalar multiple of the identity@wb)trN (O, S 2| )

non-identity non-independence
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How to fit the model and estimate the parameters?
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How to fit the model and estimate the parameters?

OLS (Ordinary Least Squares)

i y — Xb Data predicted by our model
| — e= y— y Error between predicted and
| o actual data
— - n

e S — Goal is to determine the

- = = \V-
- (D) € y Xb betas such that we minimize

the quadratic error
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OLS (Ordinary Least Squares)

The goal is to minimize

eTe — (y- X[S)T (y- XE) the quadratic error

between data and model



OLS (Ordinary Least Squares)

The goal is to minimize

e'e=(y- Xb)' (y- Xb) ne quadrat eror
e'e=(y" - 6'X")(y- Xb)



OLS (Ordinary Least Squares)

The goal is to minimize

eTe — (y- XE)T (y- X[S) the quadratic error

between data and model

This is a scalar and the

eTe: (yT - ETXT)(y- Xé) ;ra;r;z:a;sgofascalar is
e'e=y'y- vV Xbh- BTXTy+bH"XTXb



OLS (Ordinary Least Squares)
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OLS (Ordinary Least Squares)

The goal is to minimize

eTe — (y- X[S)T (y- X[S) the quadratic error

between data and model

This is a scalar and the

eTe — (yT - bT XT )(y_ Xb) ;rzngjrsgof a scalar is
ee=y'y-y' Xb- b'X'y+b" X" Xb
ele=y'y- 26" X'y+bH' X' Xb
You find the extremum
e e _ofafu_ncti_on by taking
1 -2X'y+ 2X"Xb Setting 1t t0 2610
M6

0=-2X"y+2X"Xb




OLS (Ordinary Least Squares)

The goal is to minimize

eTe — (y- XE)T (y- Xé) the quadratic error

between data and model

This is a scalar and the

e'e=(y" - 6'X")(y- Xb) amipons o asea
ee=y'y- vV Xb- BTXTy+bH"XTXb

ee=y'y- 26" XTy+H"XTXb
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0=-2X"y+2X"Xb

Parameters




A geometric perspective on the GLM

OLS estimates

f=(X"X)*X"y

Design space
defined by X



Correlated and orthogonal regressors

defined by X

Design space

X2

y= X1181 + Xzﬂz +€

ﬁlzﬂzzll

y = X1181 + X;B; +€

181>1;,B; =1

Correlated regressors =
explained variance is shared
between regressors

When X, is orthogonalized with
regard to x,, only the parameter
estimate for x, changes, not that
for x,!



We are nearly there...

linear model
— efrers ]
statistic
- cSiTol
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...but we are dealing with fMRI data
+



What are the problems?

Design Error

Fl]]]]]] MRV

]]]]]]] 1. BOLD responses have a delayed and dispersed form.

—‘ . The BOLD signal includes substantial amounts of low-
frequency noise.

MR 3. The data are serially correlated (temporally autocorrelated). This
violates the assumptions of the noise model in the GLM




Problem 1. Shape of BOLD response

ARl -

f®g(t) =] f(r)g(t-r)dz

The response of a linear time-invariant (LTl) system is the convolution of the input
with the system's response to an impulse (delta function).
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Solution: Convolution model of the BOLD response
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expected BOLD response
= input function x impulse
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Problem 2: Low frequency noise

MRI Scanner Cutaway
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Problem 2: Low frequency noise
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Linear model
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Solution 2: High pass filtering
Frequency domain
128 second High-pass filter
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Problem 3: Serial correlations

.i.d non-identity non-independence

e
4 I
Cov(e) = Cov(e) = Cov(e) :g
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n: number of scans




Problem 3: Serial correlations

« Transform the signal into a space where the error is iid

Thisisi.i.d

—
Wy =WX 3 +We

* Pre-whitening:
1. Use an enhanced noise model with multiple error covariance
components, i.e. e ~ N(0,0%V) instead of e ~ N(0, c?l).

2. Use estimated serial correlation to specify filter matrix W for whitening the
data.



Problem 3: How to find W = Model the noise

e =ae_, +& with g ~N(0,5°%)

15t order autoregressive process: AR(1)

autocovariance
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Model the noise: Multiple covariance components

2\/ V oc Cov(e)
e~ N (O, O ) V=>1Q
enhanced noise model error covariance components Q

and hyperparameters

Q,
— r?41 F}Il_/z

Estimation of hyperparameters with EM (expectation
maximisation) or ReML (restricted maximum likelihood).




How do we define W ?

« Enhanced noise model

Remember linear transform
for Gaussians

Choose W such that error
covariance becomes spherical

Conclusion: W is a simple function of V

e~ N(0,o%V)

X~ N(u,o%),y = ax
=y~ N(ay,a’c?)

We ~ N (0, c°W V)
W2 =
=W =V V2

Wy =WX 3 +We

e =X O+e_




We are there...

 the GLM models the effect of your experimental manipulation on the acquired data
* GLM includes all known experimental effects and confounds

* estimates effects an errors on a voxel-by-voxel basis

Because we are dealing with fMRI data there are a number of problems we need to
take care of:

 Convolution with a canonical HRF
 High-pass filtering to account for low-frequency drifts

 Estimation of multiple variance components (e.g. to account for serial correlations)
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We are there...

c=10000000000

Null hypothesis:IB1 =0

\|‘ error
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So far we have looked at a single voxel...

Mass-univariate
approach:

GLM applied to >
100,000 voxels

single voxel .
time series

Threshold of
P<0.05 more than
5000 voxels
significant by
chance!

Massive problem with
multiple comparisons!

Solution: Gaussian
random field theory



Outlook: further challenges

e correction for multlple COmpariSC)nS - Talk: Multiple Comparisons Wed 8:30 — 9:30

° Varlablllty In the HRF across voxels - Talk: Experimental Design Wed 9:45
—10:45

* [imitations of frequentist statistics > Talk: entire Friday

* GLM ignores interactions among voxels > Talk: Multivariate Analysis Thu 12:30

—-13:30



Thank you for listening!
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