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Overview of SPM - Resting state fMRI
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‘Exponential’ interest

Number of publications / yr

« articles on brain connectivity
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Scopus search: (“functional Magnetic Resonance
Imaging” OR “functional MRI” OR “fMRI”) AND (((rest OR
resting) AND connectivity) OR “resting state” OR
“spontaneous fluctuations” OR “intrinsic fluctuations”)

Pawela & Blswal Birn (2012)

(2011) Brain
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Paradigm shift

® Functionality: Local| =———> Distributed

3a. Faces > Objects

Kanwisher et al. (1997)
J Neurosci



Paradigm shift

® Functionality: Local —— Distributed

3a. Faces > Objects

Kanwisher et al. (1997) Haxby et al. (2001)
J Neurosci Science



Paradigm shift

Functionality: Local| =———> Distributed
How can we characterise systems?

How can we characterise systems-level
variability?

Translational research; Clinic «e=—>» Lab



Connectivity

® Anatomical connections
can be inferred

- e.g., diffusion tensor
imaging (DTI)

(... also the Human Connectome Project, NIH)




Functional connectivity
(FC)

® “Temporal correlations between remote
neurophysiological events” - Friston (1994), HBM

medial orbitofrontal
superior frontal

Buckner et al. ’09 J Neurosci

Bullmore et al. 09 Neuroimage lateral parietal posterior cingulate
precuneu

Honey et al. '09 PNAS

® |arge-scale networks




Connectivity:
structural = functional?

Healthy control

3 ul| cts w nh agenesis of the corpus callosum

Quigley et al. (2003) AUNR



These aren’t the blobs
youre looking for...

Shulman et al. (1997) J Cogn Neurosci; Raichle et al. (2001) PNAS



Resting-state FC

Motor cortex defined by Spontaneous correlations with
task-activation fMRI motor cortex

Biswal et al. (1995) Magn Reson Med



Non-motor networks?

t-score

Greicius et al. (2003) PNAS



Diseased networks?
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Greicius et al. (2004) PNAS



Diseased networks?

Healthy,
young, AD
predisposed
> non-
predisposed

Filippini et al. (2009) PNAS



Diseased networks

ATROPHY

DEFAULT AMYLOID
ACTIVITY DEPOSITION

METABOLISM
DISRUPTION

Buckner et al. (2005) J Neurosci



Diseased networks

Syndrome-specific regional atrophy patterns: patients vs. controls @, A"°:°'g£'!
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Seeley et al. (2009) Neuron



What’s the attraction?

® “It’s not very controlled, is it?”

® No special cognitive relevance
Translational neuroscience - biomarkers!?
Circumvent experimental/experimenter bias

Advantages of not having to define a specific
paradigm to measure ‘cognitive’ activity

“One man’s noise is another man’s signal”



What'’s in 2 hame!

® A note on nomenclature...

I 2
Resting(-state) Connectivity
Intrinsic Activity
Endogenous Oscillations
Spontaneous Fluctuations
Task-free/-independent Witchcraft etc. ...

® “Resting-state” as a product of the
method, not the interpretation




Resting-state networks
(RSNs)

® Multiple spatial patterns of temporally correlated activity

Beckmann et al.
(2005) Phil Trans R
Soc Lond B




Resting-state networks
(RSNs)

® Multiple spatial patterns of temporally correlated activity
® RSNs reflect distinct, large-scale neuronal functional systems

® Can be identified in absence of strictly-defined models

Smith et al. (2009)
PNAS




Resting-state networks
(RSNs)

® Spatial characteristics: (dys)function?




Resting-state networks
(RSNs)

RSNs BM




RSN connectivity:
structural = functional

26
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)
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Greicius et al. (2008) Cereb Cortex



Grey Matter Density Confound

Correlation with white matter structure

LTLE

Voets et al. (2012) Brain

ICO7 Astericr Defauk Mode Networkc LTLE> CONTROLS (p=0018)

RTLE

1C01 Medial Default Mode Network Assoclation In controls p=0.05, absent In RTLE




Resting-state FC
analysis options




Resting-state FC
analysis options

|. Seed-based correlation
analysis (SCA)




Resting-state FC
analysis options

|. Seed-based correlation
analysis (SCA)




Resting-state FC
analysis options

|. Seed-based correlation 2. Independent
analysis (SCA) component analysis (ICA)




Resting-state FC
analysis options

|. Seed-based correlation 2. Independent
analysis (SCA) component analysis (ICA)




SCA in SPM

SPM12b (5704); Graphics

2b (5704): Craphics
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Analysis pros & cons: SCA

BOLD signal time series

AR A At
Tlme’
Cole et al. (2010 1 et
e S orasol |. Seed-based correlation analysis: ‘mass

univariate’ approach



Analysis pros & cons: SCA

n

Front Seet Noaraso! 2. Independent component analysis:
‘multivariate’ approach



Analysis pros & cons: SCA

® Direct answer to a direct question...

- What ‘network’ of regions is most strongly
correlated with the BOLD signal of my ROI?

® Can the results of seed-based FC analyses
be fully described as forming a ‘network’,
neurobiologically speaking?

- As many networks as possible seeds (each voxel)
® Connectivity ‘nonstationarity’

® Global signal regression



Between-network
Interactions

® RSN temporal characteristics (e.g., 'nonstationarity’)?

b L € VN je"
Fox et al. (2005) “ ' '
PNAS

Time (seconds)




Between-network psychopathology model

N

Menon (2011) TICS



The dilemma of global
signal regression

® PRO:aids with removal of nhon-neuronal
noise from seed-based analyses

® CON:artificially enhances and/or induces
negative (/anti_)correlations Corre'la(tl‘o?\:wth PCCROI—WlthGlotia‘Iflgnal.Regresswn ™

Murphy et al. (2009)
Neurolmage




Independent component
analysis (ICA)




Independent component
analysis (ICA)

® Finds projections (components) of maximal
independence in non-Gaussian data using higher-
order (multivariate) statistics

® Multiple software packages for applying ICA to fMRI

- FSL MELODIC (Multivariate Exploratory Linear Optimized
Decomposition into Independent Components)

- GIFT
- |ICASSO... etc.




|CA-based parcellation




Analysis pros & cons: |ICA

® |CA does not require a priori knowledge of time
courses or spatial maps / regions of interest

® Resulting components can be thought of as
‘networks’, perhaps more representatively than
the results of seed-based analyses

® |CA also provides a valuable de-noising tool;
signal components suffer less artefact intrusion

- other ICs account for structured noise effects

- Single-session ICA-based cleanup - e.g., Salimi-
Khorshidi et al. (2014) Neurolmage



Analysis pros & cons +

- Noise components

- slice ‘drop-outs’
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Analysis pros & cons +

- Noise components

- gradient instability
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Analysis pros & cons +

- Noise components

- EPl ‘ghost’ artefacts
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Analysis pros & cons +

- Noise components

- High-frequency (pulsatile?) noise

Thanks to C. i
Beckmann for
examples




Analysis pros & cons +




Analysis pros & cons +

- Noise components

- Head motion




Motion aside...

® Huge debate about the importance of
strictly controlling for motion/micro-
motion confounds in FC analyses

@@ @

Power et al. (2012)
Neurolmage



Analysis pros & cons: |ICA

® |CA: Model order selection - what is the ‘correct’
number of components for a given data set!?

® ‘Splitting’ / “fusing’ of components: levels of
neurobiological complexity, or mathematical
‘crowbarring’?

® How does one decide which components are ‘of
interest’/functional relevance/neuronal in origin?

® Nonstationarity again... Temporal ICA? - Smith et
al (2012) PNAS
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Multi-session RSN
identification: concat-ICA
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Calhoun et al. (2001) HBM; Beckmann & Smith (2005) Neuroimage




Multi-session RSN
comparison: dual regression
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Alternative methods

® Graph theoretical approaches
- ‘Nodes’ & ‘Edges’
- What’s your cut-off point?
® Amplitude of low-frequency fluctuations (ALFF)

® Regional homogeneity (ReHo)

® Clustering
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Buckner et al. ’09 J Neurosci

Bullmore et al. ’09 Neuroirﬁage

precuneus
Honey et al. ‘09 PNAS



Alternative methods

® Seed-based partial correlation analysis

- ‘Parcellation’ of functional regions based on seed-to-
target functional connectivity strengths

- Topographic connectivity

= .10 .
Correlations with cerebral cortex masks Anatomical reference showing lobule labels

O’Reilly et al. (2010)
Cereb Cortex

o
Z-s00re '.WW - o
e
—"m'




To do...

Validate resting-state fMRI characteristics in
terms of their qualities as biomarkers

Fully explore the classification accuracy of
resting-state relative to, e.g., task-fMRI

Continue recent trend in data-sharing &
meta-analytic approaches

Imbue cognitive relevance by moving the
emphasis from ‘resting’ to ‘mental’ state
networks



To do...

® Validate resting-state fMRI characteristics in
terms of their qualities as biomarkers

® Fully explore the classification accuracy of
resting-state relative to, e.g., task-fMRI
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Classifying populations
& individuals

® Age & Sex-related variability - Biswal et al.

(2010) PNAS
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Classifying populations
& individuals

® Age & Sex-related variability - Biswal et al.
(2010) PNAS

® However;"ADHD-200" competition: personal
characteristic data (site of data collection, age,

gender, handedness, |1Q) outperformed fMRI
data under a logistic classifier*

*Brown et al. (2012)
Front Syst Neurosci



Resting-state ‘effective
connectivity’?

® “The influence one neural system exerts
over another” - Friston (1994), HBM

® | ag-based methods; Granger Causality

® (Stochastic/spectral) DCM

® High temporal-resolution acquisitions

® ‘Multiband’ acquisitions



Resting-state ‘effective
connectivity’?

® (Stochastic/spectral) DCM



‘Mechanistic’ analysis of
resting-state fMRI data

Anatomical Priors Simplified model Two-state implementation

aaaaaaaaa



‘Mechanistic’ analysis of
resting-state fMRI data

Direct
pathway “Hidden node”
see methods

< Excitatory connection

Inhibitory connection

&) Positive modulatory effect
@ Q Negative modulatory effect

* Predictor of DBS efficacy

Kahan et al
(2014) Brain



‘Mechanistic’ analysis of
resting-state fMRI data

More advanced/abstract cognitive models!?

Other neuromodulatory systems!?

Hypothesis-driven

Informed by key historical work across

multiple leve

Maximise uti

s of biological complexity

ity for future applications in

neuropsychiatry & drug development
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