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Structural, functional & effective connectivity

structural connectivity functional connectivity effective connectivity

Sporns 2007, Scholarpedia

o anatomical/structural connectivity

. Context-independent
presence of axonal connections

o functional connectivity
statistical dependencies between regional time

, Mechanism - free
series

n effective connectivity
causal (directed) influences between neurons or
neuronal populations

Mechanistic




Functional Connectivity

Stafistical dependencies between regional time series

Seed voxel correlation analysis
Coherence analysis
Eigen-decomposition (PCA, SVD)

Independent component analysis (ICA)




Seed voxel correlation analyses

o hypothesis-driven choice of a seed voxel /roi
o extract reference time series

o voxel-wise correlation with all other voxels

A Posterior Putamen

Helmich R C et al. Cereb. Cortex 2009



Functional Connectivity

o Pro
o useful when we have no experimental control over the g _>g
system of interest and no model of what caused the data
(e.qg. sleep, hallucinations, etc.) 0
C
o Con
o interpretation of resulting patterns is difficult / arbitrary A B
© NO mechanisfic insight 0\ /0
o usually suboptimal for situations where we have a priori '0)
knowledge / experimental control C
A B
: .. O O
Effective Connectivity A

OO0




Effective Connectivity

Causal (directed) influences between neurons /neuronal populations

o In vivo and in vifro stimulation and recording

©

©
o Models of causal inferactions among neuronal populations

o explain regional effects in terms of interregional connectivity




Models for computing effective connectivity in fMRI data

o Structural Equation Modelling (SEM)
Mclintosh et al. 1991, 1994; Buchel & Friston 1997; Bullmore et al. 2000

o Regression models
(e.g. psycho-physiological interactions, PPls)
Friston et al. 1997

o Time series models (e.g. MAR, Granger causality)
Harrison et al. 2003, Goebel et al. 2003, but see Smith et al. 2012

o Ancestral graph theory
Waldorp et al. 2011

o Dynamic Causal Modelling (DCM)
bilinear: Friston et al. 2003; nonlinear: Stephan et al. 2008; stochastic: Li et al.
2011
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Psycho-physiological interactions (PPI)

o Bilinear model of how the psychological context A changes the
influence of area B on area C :

BxA-o>C

o Add regressor to the GLM: the timeseries of VOI x psychological
confext

o A PPl corresponds to differences in regression slopes for different
contexts.

172

171

" no'attention

1 1 1 1 1 1 1
05 0 05 1 1.6 2 25 a a5

V1 activity

Friston et al. 1997, Neurolmage; BUchel & Friston 1997, Cereb. Cortex 11



Psycho-physiological interactions (PPI)

o Pro

o given a single source region, we can test for its contexi-
dependent connectivity across the entire brain

o easy to implement

o Con
o only allows to model contributions from a single area
o Ignores differences in neurovascular coupling in different areas
o ignores time-series properties of the data

DCM for more robust statements of effective connectivity
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Dynamic Causal Modelling (DCM)

Electromagnetic
forward model:
neural activity—EEG
MEG

LFP

Neural model:
regional interactions — /

neural activity:

fMRI

simple neuronal model
complicated forward model

complicated neuronal model
simple forward model
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Neural model

o Aim: model temporal evolution of a set of neuronal states x;

System states x,

State changes are dependent on:

/ 1 \ — the current state x
— external inputs u

_— _
. . — its connectivity 9

@zF(x,u,é’)

Connectivity parameters 0 dt
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DCM parameters = rate constant

dx
7; = a, X, T > X4 (t) = X (O) eXp(allt)

Decay function

If A>Bis 0.10 s'! this means that,
per unit time, the increase in

activity in B corresponds to 10%
of the current activity in A

O—O.l 0 0.1 -0.2 0304050.60.7080.9
7=1n2/s
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DCM parameters = rate constant

dx
— 7; =a,,x, =P x (1)=x1(0)exp(ar)

Decay function i

O—O.l 0 0.1 -0.2 0304050.60.7080.9
7=1n2/s
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Neurodynamics: 2 nodes with input

1 n, f'
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Example: 2 nodes with input

EEEEEEE

activity in x, is
coupled to x; via a,,

SN AVAVAVAVAVANAN

X = apX, + U, X, a, 0 |x Ci1
] . = + u,
Xy = Ay X, +dyX, X, @ Ay || X, 0




Example: 2 nodes with input

stimulus u,

activity in x, is
coupled to x; via a,,
coefficient a,;

Xy = ap X, + ¢y

Xy = Ay X, +dyX,

x=Ax+Cu
6 =1{4,C}

16l

Ci1

0
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Example: context-dependent enhancement

A

stimulus u,

U
context u,

Xy =0ay X TC6 U
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Example: context-dependent enhancement

A

stimulus u,

context u,

+U,

U
U
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Neural state equation

state external current external
stimulus u, changes inputs state  inputs
ot ' oy ' '
context u . :
L2 x=| A4+ E ujB(J) x+ Cu
j=1
190
6 =4{4,B,C}
/ \
fixed inputs that  direct inputs
connectivity  modulate  drive activity
connectivity
X, a, 0 0 O} x ¢, O u
) e ol Mo o
Xy |\ [ Ynp | | O) Xy U,
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DCM for tMRI: the full picture

BOLD

hemodynamic
model

X
Neuronal states s

integration

modulatory
iINpuUt U,(t)

driving >t

input u, (1)
“Hl » 1

Stephan & Friston (2007), Handbook of Brain Connectivity
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Validity of 2-level model

OPEN a ACCESS Freely available online H.%BIOLOGY

Identifying Neural Drivers with Functional
MR: An Bectrophysiological Validation y

Olivier David ", Isabelle Guillemain "2, Sandrine Saillet "%, Sebastien Reyt %, Colin Deransart "2,
Christoph Segebarth1'2, Antoine Depaulis"'2
1 INSERM, U836, Grenoble Institut des Neu

‘ances, Grenoble, France, 2 Université Joseph Fourier, Grenoble, France

Whether functional magnetic

ing (fMR!) allows the identification of neural drivers remains an open
guestion of particular import i

logi uropsychological models of the brain, and/or to
understand neurophysiopatho ina spontaneous spike-and-wave
discharges originating fr s electroencephalo-
graphic (EEG) an ions strongly
activated in f :
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The hemodynamic “Balloon™ model

BOLD signal

y(0) = 2{v.0)

Lchnngas in volume changes in dHb

)

B =3 g = f E(fp)/p—v"qh
t r

flow indudion
_ o 2X+ ]
T =8 hemodynamic
1|* parameters
: : o Region-specific
vasodilatory signal HREs
—»
S=z—a8—~pJf —1) o Important for
4 model fitting,
EI:}E;;L “R% newrapal  mput bLTJT of ?O
Stephan et al. 2007, e INTeres
Neurolmage 1 ~(7)
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Hemodynamic model

y represents the simulated
observation of the bold

response, including noise, i.e.
y = h(u,0)+e

BOLD
(with noise added)

BOLD
(with noise added)

X: neuronal activity
Y: BOLD response
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Parameter estimation: Bayesian inversion

U,

U,

R A R

* *
¢ .
L .
L ] a

B ————

u [ ]
. LJ
" ’0

2 0. ‘0

Qggut

“Estimate neural & hemodynamic
parameters such that the
MODELLED and MEASURED BOLD
signals are similar (model
evidence is optimised), using
variational EM under Laplace
approximation”

200 400 600 800 1000 1200

1400

1600 1800 2000
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Bayesian model inversion

Regional responses

Variational Expectation-Maximization algorithm

Specify generative forward model
—p (Wwith prior distributions of parameters)

lterative procedure:

1.

2. Compare model response with data

3. Improve parameters, if possible

Compute model response using

current set of parameters

\4

1. Gaussian posterior distributions of

parameters

2. Model evidence

No |y

p@|y,m)

p(y|m)




Bayesian model inversion & priors in DCM

Express our prior knowledge or “belief” about parameters of the model

Parameters governing

o Hemodynamics in a single region 0.7 . —
— Likelihood
o Neuronal interactions il /\ —— Posterior
0.5
. . 0.4-
Constraints (priors) on |
o Hemodynamic parameters 02
- Empirical 0.1}
o Self connections 9z s = =

- principled
o Other connections
- shrinkage




Inference about DCM parameters

Bayesian single subject analysis Classical frequentist test across Ss
« gaussian assumptions about the test summary statistic:

posterior distributions of the

parameters — one-sample t-fest:
. posterior probability that a certain parameter > 02

parameter (or contrast of

parameters) is above a chosen — paired t-fest:
threshold y: parameter 1 > parameter 22

by default, y is chosen as zero — the
prior ("does the effect existe").

l Bayesian parameter averaging
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Example: Brain Connectivity in Synesthesia

o Specific sensory stimuli lead to unusual, additional experiences
o Grapheme-color synesthesia: color
o Involuntary, automatic; stable over time, prevalence ~4%

o Potential cause: aberrant cross-activation between brain areas
o grapheme encoding area
o colorarea V4
o superior parietal lobule (SPL)

Hubbard, 2007

Can changes in effective connectivity explain synesthesia activity in V4¢

37



Model Comparison

Boftom-up Top-down

(Ramachandran & Hubbard, 200T) (Grossenbacher & Lovelace, 2001)

A\ Y X
19

T 1
SG cG G CG

tn

Projectors 2| Associators
& 3|
S |
! %
DD 0.2 04 0.6 08 1 A B C
Top-down

Bottom-up

Van Leeuwen, den Ouden, Hagoort (2011) JNeurosci 38



Effective connectivity reflects sensory experience

& Associator
A Ment. scr. proj.
® Surface proj.

Model evidence difference score
(BU -TD)

Projector-associator difference score (P-A)

Van Leeuwen, den Ouden, Hagoort (2011) JNeurosci
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Quiz: can this DCM explain your datae

e

photic

motion hofic —~
attention I. P @
[ J

== Q)
..o prr S S0
=T= phoﬁcék/'“’
motion motion
II @ attention attention
m

— /aﬂenﬁon
hotic

g }@ photic 2@ photic é
mohon /Qé

mohon motion

1l
©

S

""I

"""..
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GLM vs. DCM

DCM tries to model the same phenomena (i.e. local BOLD responses)
as a GLM, just in a different way (via connectivity and its modulation).

no activation detected by a GLM
— no motivation to include this region in a deterministic DCM.

however, a stochastic DCM could be applied despite the absence of
a local activation.

attention

- attention @ \l
o 3@; - —@L @

Stephan (2004) J. Anat. 43




The evolution of DCM in SPM

o DCM is not one specific model, but a framework for Bayesian
inversion of dynamic system models

o The default implementation in SPM is evolving over fime
o better numerical routines for inversion

o change in priors to cover new variants (e.g., stochastic DCMs,
endogenous DCMs etc.)

‘ To enable replication of your results, you should state
which SPM version you are using when publishing
papers.

44



DCM Roadmap

neuronal
dynamics

haemodynamics

state-space
model

oS posterior
P parameters
Bayesian Model
Inversion
model
[ Wi eene comparison ]
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Exciting extensions in DCM

Nonlinear DCM for fMRI: Could connectivity changes be mediated
by another region¢ (Stephan et al. 2008)

Embedding computational models in DCMs: DCM can be used fo

make inferences on parametric designs like SPM (den Ouden et al. 2010,
J Neurosci.)

DCM as a summary statistic: clustering and classification: Classify

patients, or even find new sub-categories (Brodersen et al,
201 INeuroimage)

Integrating tractography and DCM: Prior variance is a good way to

embed other forms of information, fest validity (Stephan et al. 2009,
Neurolmage)

Stochastic / spectral DCM: Model resting state studies / background
fluctuations (Liet al. 2011 Neuroimage, Daunizeau et al. Physica D 2009)

46



Validation studies of DCM

o reliability (reproducibilty)
o parameter estimates are highly reliable across sessions (Schuyler et al. 2010)
o model selection results are highly reliable across sessions (Rowe et al. 2010)

o face validity
o simulations and empirical studies (Stephan et al. 2007, 2008)

o construct validity
o comparison with SEM (Penny et al. 2004)
o comparison with large-scale spiking neuron models (Lee et al. 2006)

o predictive validity:

infer correct site of seizure origin (David et al. 2008)

infer primary recipient of vagal nerve stimulation (Reyt et al. 2010)

infer synaptic changes as predicted from microdialysis (Moran et al. 2008)
infer conditioning-induced plasticity in amygdala (Moran et al. 2009)

track anaesthesia levels (Moran et al. 2011)

predict sensory stimulation (Brodersen et al. 2010)

infer DA induced changes in AMPA/NMDA ratio from MEG (Moran et al. 2011)
predict presence/absence of remote lesion (Brodersen et al. 2011)

©@ ©@ e e e e e e

47



To get started...

o 10 Simple Rules for DCM (2010). Stephan et al. Neurolmage 52

o The first DCM paper: Dynamic Causal Modelling (2003). Friston et al. Neurolmage
19:1273-1302.

o Physiological validation of DCM for fMRI: Identifying neural drivers with functional
MRI: an electrophysiological validation (2008). David et al. PLoS Biol. 6 2683-2697

o Hemodynamic model: Comparing hemodynamic models with DCM (2007).
Stephan et al. Neurolmage 38:387-401

o Nonlinear DCM:Nonlinear Dynamic Causal Models for FMRI (2008). Stephan et al.
Neurolmage 42:649-662

o Two-state DCM: Dynamic causal modelling for fMRI: A two-state model (2008).
Marreiros et al. Neurolmage 39:269-278

o Stochastic DCM: Generalised filtering and stochastic DCM for fMRI (2011). Li et al.
Neurolmage 58:442-457

o Bayesian model comparison: Comparing families of dynamic causal models
(2010). Penny et al. PLoS Comput Biol. 6(3):e1000709

48



Thank you

Advanced SPM course Zurich, February 05-06, 2015
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Attention to motion in the visual system

Porodigm Stimuli 250 radially moving dots at 4.7 degrees/s

Pre-Scanning
5 x 30s trials with & speed changes (reducing to 1%)
Task - detect change in radial velocity

Scanning (no speed changes)
FAFNFAFNS...

o . F - fixation
g s S - observe static dots + photic
N - observe moving dots + motion
A - attend moving dofts + attention
Parameters - blocks of 10 scans

- 360 scans total
- TR = 3.22 seconds

51



Attention to motion in the visual system

Paradigm Results

Q 03 Attention — No attention

BUchel & Friston 1997, Cereb. Cortex
BUchel et al. 1998, Brain

- fixation only

- observe static dots+ photic 2> V]

- observe moving dots + motion > V5§

- task on moving dots  + attention > V5 + parietal cortex




DCM: comparison of 2 models

Model 1 Model 2
attentional modulation attentional modulation
of V1—-V5: forward of SPC—V5: backward

Photic @ Photic Attention @
.

Iv\o’ri'bn

Iv\o’rioﬂn
Atftention

Bayesian model selection: Which model is optimale




Attention to motion in the visual system

Paradigm Ingredients for a DCM

Specific hypothesis/question

Model: based on hypothesis
Timeseries: from the SPM
Inputs: from design matrix

N 03

0 s Model | Model 2
attentional modulation attentional modulation
of V1-V5: forward of SPC—V5: backward

phajic = R =
ol o

Motion Motion

Attention




DCM: linear model

ul - pho’nc
4— »

xl — a”xl —+ a12x2 -+ Clul
Xy = Ay Xy T AyX, +aysX;5

X3 = A3 X, + Aj3X;5

x=Ax+Cu
0 =1{4,C}




Attention to motion in the visual system

DCM - GUI basic steps

| — Extract the time series (from all regions of interest)

2 — Specify the model

3 — Estimate the model

4 — Repeat steps 2 and 3 for all models in model space
5 — Compare models

6 — OPTIONAL: do parameter inference on optimal model (potentially
after model averaging)
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Inference about DCM parameters

Bayesian single subject analysis Classical frequentist test across
Ss
e The model parameters are
distributions that have a mean e Test summary statistic: mean
Ne|, And covariance Cg,,. Ne)y
— Use of the cumulative normal — One-sample t-test.
distribution to test the Parameter > 0¢
probability that a certain — Paired t-test:
pCIrCImeTer (Or confrast of pgrgmefer 1> pgrgmefer
parameters c'ng,) is above a 22

chosen threshold v:
Y — rMmANOVA: e.g. in case of

multiple sessions per subject




Model comparison and selection

Given competing hypotheses
on structure & functional !
mechanisms of a system,
which model is the best?

4

Which model represents the
best balance between
model fit and model
complexity?

@ / /I \ Model complexity "
For which model m does . \\w \A/\/B“

Goodness of fit

Good

A
I
\ Overfitting
¥

Model fit

Generalizability

Poor

become maximale

model evidence p(y | m)
Pitt & Miyung (2002) TICS 58



Comparing models with Bayes factors

For a given dataset, fo compare two models, we compare

their evidences.

p _pOIm)
c o p(ymy)

positive value, [0; o]

or their log evidences

B, p(m;|y) | Evidence
1to3 50-75% weak
31to 20 75-95% positive

20to 150 95-99% stfrong
> 150 > 99% Very strong

In(B,,) = In(p(y | m,))-In(p(y | m,))~ F, - F,

Kass & Raftery 1995, J. Am. Stat. Assoc.
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Comparing models with Bayes factors

A posteriori Model evidence

Bayes' rule: @ ‘p(m)

p(y m)- p(m)dm

Given flat priors on the models, the posterior and

—) model evidence are equivalent




