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Generative	model

( | , )p y mθ

( | , )p y mθ ( | )p mθ⋅

1. enforces mechanistic thinking:	how could the data have been caused?	Where do	
we look next?

2. generate	synthetic	data	(observations)	by	sampling	 from	the	prior	– can	model	
explain	certain	phenomena	 at	all?	

3. inference about model structure:	 formal	approach to disambiguating mechanisms
→ p(y|m)	

4. inference about parameters →	p(θ|y)

5. A	natural framework to test interventions →	adjusting the optimized state space
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Estimate	neural	&		hemodynamic	
parameters	such	that	the	MODELLED	

and	MEASURED	BOLD	signals	are	
similar	(model	evidence	is	
optimised),	using	variationalEM	
under	Laplace	approximation

Parameter	estimation:	Bayesian	inversion

...	Noise	Assumption	 (Gaussian	with	temporal	
correlations)	 leads	to	a	probabilistic	model.

So	for	one	data	point	: ( | , )p y mθ =		
!
"#$% &

'(') %

%*%
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Parameter	estimation:	Bayesian	inversion

Have	Data

Have	Likelihood

Specify	Prior

( | , )p y mθ =		
!
"#$% &

'(') %

%*%

( | , )p y mθ

( | , )p y mθ ( | )p mθ⋅

Hyperparameter
in	the	model

Given	by	model	form	&	parameters
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Parameter	estimation:	Bayesian	inversion

)|(
),(),|(),|(

)(),|()|(

myp
mpmypmyp

dpmypmyp

θθ
θ

θθθ

=

= ∫Have	Data

Have	Likelihood

Specify	Prior

The	Posterior:
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θθ
θ

θθθ

=

= ∫Marginal	Likelihood	 – tricky	integral...	try	it	!

Instead	– let’s	assume	a	partition	over	parameter	space	is	possible

1. Split	hyperparameter from	parameters
2. Assume	some	form	of	posterior ( ) ( ) ( ) ( ), | ,p y q q qθ λ θ λ θ λ≈ =
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Variational Bayes (VB)

best proxy
+ ,

true
posterior
- , .

hypothesis
class

divergence
KL +||-

Idea:	find	an	approximation	+(,) to	the	true	posterior	- , . .

Often	done	by	assuming	a	particular	form	for	+ and	then	optimizing	 its	sufficient	
statistics	 (fixed	form	VB).
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θ λ

λ θ

θ θ λ

λ θ λ

⎡ ⎤∝ =
⎣ ⎦

⎡ ⎤∝ =
⎣ ⎦

Free-energy	approximation	to
marginal	likelihood

Maximise	variational	energies	
via	gradient	ascent

Parameter	estimation:	Variational Bayes

2 + = 45- . 6 −89(+ ,, ; , -(,,;|.))

Turned an	integral	problem into a	simpler	optimization (find	max)	
where standard procedures can be applied



Regional	responses
Specify	generative	forward	model	

(with	prior	distributions	 of	parameters)	

Variational	Expectation-Maximization	algorithm

Iterative	procedure: 1. Compute	model	 response	using
current	set	of	parameters

2. Compare	model	response	with	data
3. Improve	parameters,	if	possible

1. Gaussian	posterior	distributions	of	parameters

2. Model	evidence )|( myp

),|( myp θ

ηθ|y

Parameter	estimation	&	model	evidence:	Variational Bayes



KL[+| -

ln - .|6 ∗

2 +,.

KL[+| -
2 +,.

initialization … … convergence

Parameter	estimation	&	model	evidence:	Variational Bayes

ln - .|6



Alternative	Schemes	for	Parameter	Estimation
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Statistics

Effects	of	Acute	Tryptophan	Depletion	on	Prefrontal-Amygdala	Connectivity	While	
Viewing	Facial	Signals	of	Aggression

Passamonti et	al.	Biological	Psychiatry	2012

“ Analysis	of	Effective	Connectivity	2:	DCM
For placebo, RFX-BMS indicated evidence favoring model C1.1. Driving inputs (all faces) entered the
system via the amygdala alone, whereas the angry vs. neutral modulator affected bidirectional
connections in all three pathways. Hence, during placebo, the effect of the task is distributed within
internal PFC circuitry and across PFC–amygdala connections.
Under	ATD,	the	expected	and	exceedance	probabilities	of	C1.1	were	reduced	with	increased	expected	
and	exceedance	probabilities	of	the	two	models	(C2.1,	C3.1)	 in	which	the	contextual	modulator	acted	on	
two	or	one	bidirectional	connections.	Furthermore,	 during	ATD,	another	family	of	six	models	became	
more	likely	than	under	placebo,	in	which	driving	 inputs	“perturbed”	the	network	via	either	the	VLPFC	or	
vACC alone.
To	summarize,	ATD	reduced	not	only	the	number	of	PFC–amygdala	pathways	affected	by	processing	
angry	faces	but	also	the	location	where	face	information	entered	the	network.”



Model	comparison	and	selection

Given	competing	 hypotheses	 on	
structure	&	functional	
mechanisms	 of	a	system,	which	
model	 is	the	best?

For	which	model	m does	p(y|m)	
become	maximal?

Which	model	represents	 the
best	balance	between	model	
fit	and	model	complexity?

Pitt & Miyung (2002) TICS



pmypAIC −= ),|(log θ

Logarithm is a 
monotonic function

Maximizing log model evidence
= Maximizing model evidence

)(),|(log                    
)()(  )|(log
mcomplexitymyp
mcomplexitymaccuracymyp

−=

−=

θ

NpmypBIC log
2

),|(log −= θ

Akaike Information Criterion:

Bayesian Information Criterion:

Log model evidence = balance between fit and complexity

Penny et al. 2004a, NeuroImage

Approximations	to	the	model	evidence	in	DCM

No. of 
parameters

No. of
data points



Bayesian	Model	Comparison

The	model	goodness:	Negative	Free	Energy

( ) ( )[ ]mypqKLmypF ,|,)|(log θθ−=

[ ]

( ) ( )θθθθθθθ µµµµ

θθ

−−+−= −
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Accuracy			- Complexity

The	complexity termof F is higher
the more independent the prior parameters (↑ effective DFs)

the more dependent the posterior parameters

the more the posterior mean deviates from the prior mean

y1

y2

u1

u2 z1

z2



Bayes factors

)|(
)|(

2

1
12 myp

mypB =

positive value, [0; ∞[

But:	the	log	evidence	is	just	some	number	– not	very	intuitive!

A	more	intuitive	interpretation	of	model	comparisons	is	made	possible	by	
Bayes	factors:

To	compare	two	models,	we	could	just	compare	their	log	evidences.

B12 p(m1|y) Evidence
1 to 3 50-75% weak
3 to 20 75-95% positive

20 to 150 95-99% strong
≥ 150 ≥ 99% Very strong

Kass	&	Raftery	classification:

Kass & Raftery 1995, J. Am. Stat. Assoc.
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∑∑ −=
kk

mypmypBF )(ln)(ln 212,1

Fixed Effects Model selection via 

log Group Bayes factor:

accounts	for	both accuracy	and	complexity	of	the	model

allows	for	inference	about	structure	(generalisability)	 of	the	model

( | , )p r y α

Random Effects Model selection

via Model probability:

)( 1 Kkqkr ααα ++= !

Model	Comparison	at	the	Group	Level

• Prior	to/	instead	of	inference	on	parameters
• Which	of	various	mechanisms	/	models	best	explains	my	data
• Use	model	evidence
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Fixed	effects	BMS	at	group level‘

Group	Bayes	factor	(GBF) for	1...K subjects:

Average	Bayes	factor	(ABF):

Problems:

- blind	with	regard	to	group	heterogeneity

- sensitive	to	outliers

∏=
k

k
ijij BFGBF )(

( )k
Kij ij

k
ABF BF= ∏
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α

)|(~ pmpm kk )|(~ pmpm kk ),1;(~1 rmMultm

Random	effects BMS	for heterogeneous groups

Dirichlet	parameters	α
=	“occurrences”	 of	models	in	the	population

Dirichlet	distribution	of	model	probabilities	r

Multinomial	distribution	of	model	labels	m

Measured	data	y

Model	inversion	by	
Variational Bayes
(VB)	or	MCMC

Stephan et al. 2009a,  NeuroImage
Penny et al. 2010,  PLoS Comp. Biol.
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Random	effects BMS	for heterogeneous groups



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

r1

p(
r 1|y

)
p(r1>0.5 | y) = 0.997

m1m2

1

1

11.8
84.3%r

α =

=
2

2

2.2
15.7%r

α =

=

( ) %7.9921 => rrp
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Random	effects BMS	for heterogeneous groups
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Inference	about	DCM	parameters:	Bayesian	single	subject	analysis

• Gaussian	assumptions	about	the	posterior	distributions	of	the	parameters

• posterior probability	that	a	certain	parameter	(or	contrast	of	parameters)	is	
above	a	chosen	threshold	γ:

• By	default,	γ is	chosen	as	zero	– the	prior	("does	the	effect	exist?").
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Inference	about	DCM	parameters:	Bayesian	parameter	averaging

FFX	group	analysis:
• Likelihood	distributions	from	different	subjects	are	independent
• Under	Gaussian	assumptions,	this	is	easy	to	compute
• Simply	‘weigh’	each	subject’s	contribution	by	your	certainty	of	the	parameter

Useful	but	use	carefully!
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Separate	fitting	of	identical	models	
for	each	subject

Selection	of	parameters	of	interest

one-sample	t-test:
parameter	>	0	?

paired	t-test:
parameter	1	>	
parameter	2	?

rmANOVA:
e.g.	in	case	of	multiple	
sessions	per	subject

Inference	about	DCM	parameters:	RFX	analysis	(frequentist)

¤RFX	Approach:
Analogous	to	‘random	effects’	analyses	in	SPM,	2nd level	analyses	can	be	applied	
to	DCM	parameters
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Puttingmodel and parameter space together

Bayesian Model	Averaging	(BMA)

¤ abandons	dependence	 of	parameter	
inference	on	a	single	model

¤ uses	the	entire	model	space	considered	
(or	an	optimal	family	of	models)	

¤ computes	 average	of	each	parameter,	
weighted	by	posterior	model	
probabilities

¤ represents	 a	particularly	 useful	
alternative

§ when	none	of	the	models	(or	model	
subspaces)	considered	clearly	
outperforms	all	others

§ when	comparing	groups	for	which	the	
optimal	model	differs

( )
( ) ( )
1..

1..

|

| , |
n N

n n N
m

p y

p y m p m y

θ

θ=∑
NB:	p(m|y1..N) can	be	obtained	
by	either	FFX	or	RFX	BMS

Penny et al. 2010, PLoS Comput. Biol.
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¤ Specific	sensory	stimuli	lead	to	unusual,	additional	experiences

¤ Grapheme-color	synesthesia:	color

¤ Involuntary,	automatic;	stable	over	time,	prevalence	~4%

¤ Potential	cause:	aberrant	cross-activation	between	brain	areas

§ grapheme	encoding	area	(letter-shape	area)

§ color	area	V4	

§ superior	parietal	lobule	 (SPL)

Example	2:	Brain	Connectivity	in	Synesthesia

Hubbard, 2007

Can	changes	in	effective	connectivity	explain	synesthesia activity	in	V4?

Study:	van	Leeuwen,	den	Ouden &	Hagoort,	 2011
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Competing	Model	Hypotheses

Model	1	Grapheme	color	synesthesia	induced	

by	direct	cross-activation	in	ventral-occipital	cortex

Model	2	Disinhibition	feedback	hypothesis,	aberrant

feedback	from	multimodal	region	SPL,	activating	V4

Example	2:	Brain	Connectivity	in	Synesthesia

Stimuli:	Graphemes	(G)

¤ Synesthesia-inducing	graphemes	(SG)

¤ Colored	Control	graphemes	(CG)

SPL

LSA
V4

SPL

LSA
V4

Initially	no	winning	model



30

Example	2:	Brain	Connectivity	in	Synesthesia

SPL

LSA
V4

SPL

LSA
V4
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Relative	model	evidence	predicts	sensory	experience

Van Leeuwen, den Ouden, Hagoort (2011) JNeurosci
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Factorial	structure	of	model specification

¤ Three	dimensions	of	model	specification:

§ bilinear	vs.	nonlinear

§ single-state	 vs.	two-state	(per	region)

§ deterministic	 vs.	stochastic
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modulation	 of
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a	deterministic,	 one-state,	bilinear	
model

bilinear	DCM



bilinear	DCM
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Single-state	DCM

1x

Intrinsic	(within-
region)	coupling

Extrinsic	(between-
region)	coupling

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ℑℑ

ℑℑ

=ℑ

+=ℑ

+ℑ=

NNNN

N

ijijij

x

x
x

uBA
Cuxx

!
"

!#!
$

%

1

1

111

Two-state	DCM

Ex1

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

ℑℑ

ℑℑℑ

ℑℑ

ℑℑℑ

=ℑ

+=ℑ

+ℑ=
••••••••

I
N

E
N

I

E

II
NN

IE
NN

EE
NN

EE
NN

EE
N

IIIE

EE
N

EIEE

ijijijij

x
x

x
x

x

uBA

Cuxx

!

"

!#!

"

$

1

1

1

1111

11111

00
0

00
0

)exp(µ

Ix1

I

E

x

x

1

1

Two-state	DCM

Marreiros et al. 2008, NeuroImage



Stochastic	DCM

( ) ( )

( )

( )j x
jj

v

dx
A u B x Cv

dt
v u

ω

ω

= + + +

= +

∑

Li et al. 2011, NeuroImage

• all	states	are	represented	in	generalised	
coordinates	of	motion

• random	state	fluctuations	w(x) account	for	
endogenous	 fluctuations,
have	unknown	precision	and	smoothness	
→ two	hyperparameters

• fluctuations	w(v) induce	uncertainty	about	how	
inputs	influence	neuronal	activity

• can	be	fitted	to	"resting	state"	data	but	not	
necessarily

• DEM	optimization	scheme Daunizeau et al, 2009
Friston et al, 2008
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Spectral DCM	for ‚Resting Stare‘

¤ Alternative	Approach	to	Stochastic	Data

¤ Examine	2nd order	statistics	in	response	to	noise	input

¤ deterministic	model	 that	generates	predicted	crossed	
spectra	in	a	distributed	 neuronal	network	or	graph

¤ finds	 the	effective	connectivity	among	hidden	neuronal	
states	that	best	explains	the	observed	functional	
connectivity among hemodynamic responses

¤ advantage:
§ replaces an	optimisation problem wrt.	stochastic

differential	equations with a	deterministic approach
from linear	systems theory →	computationally very
efficient

¤ disadvantages:
§ assumes stationarity (as do	other rsfMRI methods)

Friston et al. 2014, NeuroImage



Friston et al. 2014, NeuroImage

cross-spectra	
=	inverse	Fourier	
transform	of	cross-
correlation

cross-correlation	
=	generalized	form	of	
correlation	(at	zero	lag,	
this	is	the	conventional	
measure	of	functional	
connectivity)

Oppenheimer & Shafer for Ref
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Learning	of dynamic audio-visual associations
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den Ouden et al. 2010, J. Neurosci.



Hierarchical	Bayesian	learning	model

observed	events

probabilistic	 association

volatility

k

vt-1 vt

rt rt+1

ut ut+1
( ) ( ))exp(,~,|1 ttttt vrDirvrrp +

( ) ( ))exp(,~,|1 kvNkvvp ttt+

( ) 1∝kp

Behrens et al. 2007, Nat. Neurosci.

prior	on	volatility



Explaining RTs	by	different	learning	models
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Bayesian	model	selection:	

hierarchical	Bayesian model	
performs best

5	alternative	learning	models:	

• categorical probabilities

• hierarchical	Bayesian	learner

• Rescorla-Wagner

• Hidden	Markov	models	
(2	variants)
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den Ouden et al. 2010, J. Neurosci.



Prediction	error	(PE)	activity	in	the	putamen

PE	during	
reinforcement	 learning

PE	during incidental
sensory learning

O'Doherty et al.  
2004, Science

den Ouden et al.  2009, 
Cerebral Cortex

Could	the	putamen	be	regulating	trial-by-trial	changes	of	
task-relevant	connections?

PE	=	“teaching	signal”	for	
synaptic	plasticity	during	

learning	

p	<	0.05	(SVC)

PE	during active
sensory learning



Prediction	errors	control	plasticity	during	adaptive	cognition

• Modulation	 of	visuo-
motor	connections	 by	
striatal prediction	 error	
activity

• Influence	of	visual	areas	
on	premotor cortex:
– stronger	for	surprising	

stimuli	

– weaker	 for	expected	
stimuli

den Ouden et al. 2010,  J. Neurosci .

PPA FFA

PMd

 

 

Hierarchical	
Bayesian	 learning	
model

PUT

p = 0.010 p = 0.017



Generative	embedding (unsupervised):	detecting patient subgroups

Brodersen et al. 2014, NeuroImage: Clinical
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Generative	embedding:	DCM	and	variational Gaussian	Mixture	Models

Brodersen et al. (2014) NeuroImage: Clinical

• 42	controls	vs.	41	schizophrenic	patients

• fMRI	data	from	working	memory	task	(Deserno	et	al.	2012,	J.	Neurosci)

Supervised:
SVM classification

Unsupervised:
GMM clustering

number of clusters number of clusters

71%
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Detecting subgroups of patients in	schizophrenia

¤ three	distinct	subgroups	(total	N=41)

¤ subgroups	differ	(p	<	0.05)	wrt.	negative	symptoms	on	the	
positive	and	negative	symptom	scale (PANSS)

Optimal	
cluster	
solution

Brodersen et al. (2014) NeuroImage: Clinical
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Key	methods	papers:	Advanced DCM	for	fMRI	and	BMS	– part	1
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