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Generative model

p(y|6,m)-p(0|m)

p(0|y,m)

1. enforces mechanistic thinking: how could the data have been caused? Where do
we look next?

2. generate synthetic data (observations) by sampling from the prior — can model
explain certain phenomena at all?

3. inference about model structure: formal approach to disambiguating mechanisms
= ply[m)

4. inference about parameters - p(0]y)

5. A natural framework to test interventions - adjusting the optimized state space




Parameter estimation: Bayesian inversion

Estimate neural & hemodynamic
parameters such thatthe MODELLED
and MEASURED BOLD signalsare
similar (model evidence is
optimised), usingvariational EM
under Laplace approximation

... Noise Assumption (Gaussian with temporal
correlations) leads to a probabilistic model.

So for one data point :

200 400 800 800 1000 1200 1400 1600 1800 2000




Parameter estimation: Bayesian inversion

U+
Have Data
Have Likelihood
Uz
Specify Prior
Given by model form & parameters \
P 1 (y—ym)*
= 202
p(y|6,m) Vonoz C
Hyperparameter /
in the model
p(y|8,m) p(0|m)
<
>

p(@|y,m)




Parameter estimation: Bayesian inversion

Have Data
Have Likelihood

- p(6]y.m = ZL TP
- p(y|m)

Marginal Likelihood — tricky integral... try it ! p(y | m) =fp(y | 6’,m)p(6’)dl9

Instead — let’s assume a partition over parameter space is possible

1. Split hyperparameter from parameters p(@,/‘L | y) ~ q(@,ﬂ) = q(ﬁ)q(ﬂ)

2. Assume some form of posterior




Variational Bayes (VB)

Idea: find an approximation q(0) to the true posterior p(8]y).

Often done by assuming a particular form for g and then optimizing its sufficient
statistics (fixed form VB).

true
posterior /\
p(0ly) e

divergence

KL[q||p]

hypothesis
class

best proxy
q(6)




Parameter estimation: Variational Bayes

Free-energy approximation to

marginal likelihood F(C[) = lnp(ylm) T KL(C](G, /‘D; p(e’ﬂly))

Turned anintegral problem into a simpler optimization (find max)
where standard procedures can be applied

1ool)-colloslai,
via gradient ascent - -
q(ﬂ,) o exp(l/l) = exp <1np(y,6’,ﬂ,)>

q(0) |




Parameter estimation & model evidence: Variational Bayes

- Specify generative forward model
Regional responses (with prior distributions of parameters)

Variational Expectation-Maximization algorithm

Iterative procedure: 1. Compute model response using
current set of parameters
2. Compare model response with data
3. Improve parameters, if possible

Noy

1. Gaussian posterior distributions of parameters p(@]|y,m)

2. Model evidence p(y|m)




Parameter estimation & model evidence: Variational Bayes

KL[q|lp]

F(q,y) A-

Inp(y|m)® — A Inp(ylm) —¢

KL[q|lp]

F(q,y) A

initialization ... ... convergence
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Alternative Schemes for Parameter Estimation

Neurolmage 125 (2016) 1107-1118
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Technical Note
Gradient-based MCMC samplers for dynamic causal modelling (!) CrosMark
Biswa Sengupta *, Karl J. Friston, Will D. Penny
Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London WCIN 3BG, UK
ARTICLE INFO ABSTRACT
Am'd_e history: In this technical note, we derive two MCMC (Markov chain Monte Carlo) samplers for dynamic causal models X
Received 4 October 2014 (DCMs). Specifically, we use (a) Hamiltonian MCMC (HMC-E) where sampling is simulated using Hamilton’s equa- Direct
Accepted 16 July 2015 tion of motion and (b) Langevin Monte Carlo algorithm (LMC-R and LMC-E) that simulates the Langevin diffusion of

Available online 23 July 2015 samples using gradients either on a Euclidean (E) or on a Riemannian (R) manifold. While LMC-R requires minimal

tuning, the implementation of HMC-E is heavily dependent on its tuning parameters. These parameters are therefore

optimised by learning a Gaussian process model of the time-normalised sample correlation matrix. This allows one

to formulate an objective function that balances tuning parameter exploration and exploitation, furnishing an

intervention-free inference scheme. Using neural mass models (NMMs)—a class of biophysically motivated 1/locate/ynimg
DCMs—we find that HMC-E is statistically more efficient than LMC-R (with a Riemannian metric); yet both
gradient-based samplers are far superior to the random walk Metropolis algorithm, which proves inadequate to
steer away from dynamical instability.

Gradient-free MCMC methods for dynamic causal modelling @Cmsm,k
Biswa Sengupta *, Karl J. Friston, Will D. Penny

Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London WCIN 3BG, UK

ARTICLE INFO ABSTRACT

Article history: In this technical note we compare the performance of four gradient-free MCMC samplers (random walk Metropolis
Received 3 October 2014 sampling, slice-sampling, adaptive MCMC sampling and population-based MCMC sampling with tempering) in
Accepted 6 March 2015 terms of the number of independent samples they can produce per unit computational time. For the Bayesian inver-

Available online 14 March 2015 sion of a single-node neural mass model, both adaptive and population-based samplers are more efficient compared

with random walk Metropolis sampler or slice-sampling; yet adaptive MCMC sampling is more promising in terms
of compute time. Slice-sampling yields the highest number of independent samples from the target density — albeit
at almost 1000% increase in computational time, in comparison to the most efficient algorithm (i.e., the adaptive
MCMC sampler).
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Statistics

Effects of Acute Tryptophan Depletion on Prefrontal-Amygdala Connectivity While
Viewing Facial Signals of Aggression

Passamonti et al. Biological Psychiatry 2012

“Analysis of Effective Connectivity 2: DCM

For placebo, RFX-BMS indicated evidence favoring model C1.1. Driving inputs (all faces) entered the
system via the amygdala alone, whereas the angry vs. neutral modulator affected bidirectional
connections in all three pathways. Hence, during placebo, the effect of the task is distributed within
internal PFC circuitry and across PFC—amygdala connections.

Under ATD, the expected and exceedance probabilities of C1.1 were reduced with increased expected
and exceedance probabilities of the two models (C2.1, C3.1) in which the contextual modulator acted on
two or one bidirectional connections. Furthermore, during ATD, another family of six models became
more likely than under placebo, in which driving inputs “perturbed” the network via either the VLPFC or
VACC alone.

To summarize, ATD reduced not only the number of PFC-amygdala pathways affected by processing
angry faces but also the location where face information entered the network.”
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Model comparison and selection

Given competing hypotheses on
. A
structure & functional

mechanisms of a system, which
model is the best?

$

Which model represents the [
best balance between model
fit and model complexity?

‘ / /‘ \ Model complexity

e

Pitt & Miyung (2002) TICS

Goodness of fit

Good

A
|
| Overfitting
y

Model fit

Poor

Generalizability

.
-

For which model m does p(y|m)
become maximal?




Approximations to the model evidence in DCM

Logarithm is a I Maximizing log model evidence
monotonic function = Maximizing model evidence

Log model evidence = balance between fit and complexity

log p(y |m) = accuracy(m) — complexity(m)

=log p(y | 8,m) — complexity(m)
No. of
p:ra(r)neters

Akaike Information Criterion: AIC = log p(y | Q,Wl) g:t'aogoints

Bayesian Information Criterion:  BIC =log p(y | 6,m) — glo

Penny et al. 2004a, Neurolmage




Bayesian Model Comparison

The model goodness: Negative Free Energy

F =log p(y|m)-KL|g(6), p(6| y,m)]

Accuracy - Complexity

KL[q(6), p(6|m)]

B %ln‘Ce‘ _%ln‘cﬁly‘ +%(//‘¢9y B /“‘0)rcf;1 (/“‘6’|y B Mﬁ)

The complexity term of F is higher
the more independent the prior parameters (] effective DFs)
the more dependent the posterior parameters

the more the posterior mean deviates from the prior mean




Bayes factors

To compare two models, we could just compare their log evidences.

But: the log evidence is just some number — not very intuitive!

A more intuitive interpretation of model comparisons is made possible by

Bayes factors:
positive value, [0; oof

B = p(y|m)
c p(y|m,)

B> p(mily) Evidence
1103 50-75% weak
- . -ORO iti
Kass & Raftery classification: 3t020 | 7595% | positive
20 to 150 95-99% strong
> 150 = 99% Very strong

Kass & Raftery 1995, J. Am. Stat. Assoc.




Model Comparison at the Group Level

Prior to/ instead of inference on parameters

Which of various mechanisms / models best explains my data

Use model evidence

‘ accounts for both accuracy and complexity of the model

‘ allows for inference about structure (generalisability) of the model

Fixed Effects Model selection via

log Group Bayes factor:

BF,, = Z In p(y|m,) —Z In p(y|m,)

Random Effects Model selection

via Model probability:
pr|y, o)

(r), =an /(e +...+ )

19




Fixed effects BMS at group level’

Group Bayes factor (GBF) for 1...K subjects:

_ (k)
GB EJ - HBE[/'

Average Bayes factor (ABF):

— (k)
ABF, = ,dl;[ BF}

Problems:

blind with regard to group heterogeneity

sensitive to outliers

20



Random effects BMS for heterogeneous groups

]
a Dirichlet parameters o
= “occurrences” of models in the population

v~ Dir(r; 0[) Dirichlet distribution of model probabilities r

P TN
N Multinomial distribution of model label
(\ ultinomial distribution of model labels m
m, ~ M

ult(m;l,r) Model inversion by
— ma Variational Bayes
(( ) — (VB) or MCMC
. Measured data y
Y

N p(yl | n/”l) Stephan et al. 2009a, Neurolmage
Penny et al. 2010, PLoS Comp. Biol.




Random effects BMS for heterogeneous groups

LD LD| LVF
. i
LD| RVF =errzsDgee N ’ offor o
T
el

/ N

RVE LD LVF RVF  LD|RVF LVF
stim. stim. —1 stim. stim.
——1
]
]
8 I—
g ——1
n —
I
— :
— Data: Stephan et al. 2003, Science
. Models: Stephan et al. 2007,J. Neurosci.
-35 -30 -25 -20 -15 -10 -5 0 5

Log model evidence differences




Random effects BMS for heterogeneous groups

p(r1>0.5 | y) = 0.997

450
D@ pli>n)=997%
3L
Ew— 2.5
1.5
i a, =2.2
() =157%
0O OC1 0[2 0[3 r

Stephan et al. 2009a, Neurolmage




Inference about DCM parameters: Bayesian single subject analysis

Gaussian assumptions about the posterior distributions of the parameters

posterior probability that a certain parameter (or contrast of parameters) is
above a chosen threshold y:

By default, y is chosen as zero — the prior ("does the effect exist?").

24



Inference about DCM parameters: Bayesian parameter averaging

FFX group analysis:
* Likelihood distributions from differentsubjects are independent

 Under Gaussian assumptions, thisis easy to compute
 Simply ‘weigh’ each subject’s contribution by your certainty of the parameter

group individual
posterior covariance posterior covariances

group individual posterior Useful but use carefully!
posterior mean  covariances and means

25



Inference about DCM parameters: RFX analysis (frequentist)

RFX Approach:

Analogous to ‘random effects’ analysesin SPM, 2"d [evel analyses can be applied
to DCM parameters

Separate fitting of identical models
for each subject

l

Selection of parameters of interest

one-sample t-test: paired t-test: rmANOVA:
parameter>07? parameterl> e.g. in case of multiple
parameter2? sessions per subject

26



Putting model and parameter space together

Bayesian Model Averaging (BMA)

o abandons dependence of parameter
inference on a single model

0,13 x)
o uses the entire model space considered p( n | V1N

(or an optimal family of models) = E p (Hn | V.o m)p (m | yl..N)

o computes average of each parameter,
weighted by posterior model

probabilities NB: p(ml|y;_y) can be obtained

by either FFX or RFX BMS

o represents a particularly useful
alternative

= when none of the models (or model
subspaces) considered clearly
outperforms all others

= when comparing groups for which the
optimal model differs
Penny et al. 2010, PLoS Comput. Biol.
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Example 2: Brain Connectivity in Synesthesia

Study: van Leeuwen, den Ouden & Hagoort, 2011

o Specific sensorystimulilead to unusual, additional experiences
o Grapheme-colorsynesthesia: color
o Involuntary, automatic; stable over time, prevalence ~4%

o Potential cause:aberrant cross-activation between

= grapheme encoding area (letter-shape area)
= color area V4

= superior parietal lobule (SPL)

Hubbard, 2007

Can changesin effective connectivity explain synesthesia activity in V4?

28



Example 2: Brain Connectivity in Synesthesia

Competing Model Hypotheses

Model 1 Grapheme colorsynesthesiainduced

by direct cross-activationin ventral-occipital cortex

Model 2 Disinhibition feedback hypothesis, aberrant

feedback from multimodal region SPL, activating V4

Stimuli: Graphemes (G)
o Synesthesia-inducing graphemes (SG)
o Colored Control graphemes (CG)

Initially no winning model

29



Example 2: Brain Connectivity in Synesthesia

PROJECTORS ASSOCIATORS

AB (AB >.-AB

2
3

C LsAtoVv4 D [AI ] pirg, ~0-5y) = 0.758 E LsAtoSPL
— =0
25 ] P, ~0-5ly) = 0.908 2 .
Zw | 5 . (v -0.5ly) = 0,881 g 1
kR il
_-E' 4 ] 1 = " |
- §
ﬁ = i | g o
=z a oz od B = =332 ] a2 oA L8]

Modulatary conn. [(Hz) Modulaiory conn. (Hz)

Probabllity Density

_ W4 toSPL 2 __SPLioVv4

2 27

HER §= !

i =

E? I i !

E a2 b 02 D4 o8 r.1-|:|':= 1_rgu] oo o &z a4 08
Modulsiory conn. (Hz) Modulatory conn. (H=x])




Relative model evidence predicts sensory experience

2  |e Associator 257

§ 4 Ment. scr. proj. 20 " -
o |™ Surface proj.

o 157

5 -
b~ 107 o
ge 5 - - - - 4 =
BD' A - | A A

&) ’ a0 - : W

28 b, { "1 2 4 %g§ &
g ~-Te

> -7 10

[

3 L 2 -15

= 20

Projector-associator difference score (P-A)

Van Leeuwen, den Ouden, Hagoort (2011) JNeurosci
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Factorial structure of model specification

o Three dimensions of model specification:

-} Dynamic Causal Modelling § ;|g|5|
o . Hodel options:...
= bilinear vs. nonlinear okitry eocts | e ] ninear |
= single-state vs. two-state (per region) ) Dynamic Causal Modelling =10 x|
Hodel options:...
.« e .. . rodulatory effects hilinear

= deterministic vs. stochastic s pervegion [ e | wo |

) Dynamic Causal Modelling § =10] x|

Hodel options:...

trodulatory effects hilinear
states per region ang

stochastic effects fio I yeg

33



bilinear DCM

hemodynamic
model

neuronal
states
X
modulatory A
input u,(t) .
: ftegration
driving >t §)'C=(A+zujB(’))x+
input u4(t)

>t

The classical DCM:

modulation

connectivity

a deterministic, one-state, bilinear direct inputs

model




bilinear DCM non-linear DCM

modulation
driving driving
input input

modulation

Two-dimensional Taylor series (around x¢=0, ug=0):
of of Of oS x

X, U x,,0 +—x+—u+ ux +
= J(xu) = 1(%,) 0x ou oxou ox? 2

Bilinear state equation: Nonlinear state equation:

dx NI CIRA ()
2 A"‘E%B +Eij x+Cu

i=1 j=1

dx
A+ > uB" |x+ Cu
TGO




Two-state DCM

Single-state DCM Two-state DCM

x=3x+Cu
0’ —
S = Al.j + uBU
BRI Iy 0] (x|
B Siv ] [ X, ] IE 1 I
11 IN 1 %11 %11 0 0 x]
3= X =
S=| : x=|:
o o ey
~S ~S X :
N1 NN N ATOREE ~NEE & EE E
- - - - Syl 0 Swv St Xy
Y oIE oI |G I
. i O 0 ‘:..._: /\SNN K\SNN- ': -xN-
Eg(trinsic (between-; Intrinsic (within-
region) coupling.” region) coupling’

Marreiros et al. 2008, Neurolmage ™. . ST e .




Stochastic DCM

% =(A+ EjujB(j))x+ Cv+ o™

v=u+w"

* all states are represented in generalised
coordinates of motion

« random state fluctuations w(* account for
endogenous fluctuations,
have unknown precision and smoothness
— two hyperparameters

e fluctuations w¥) induce uncertainty about how
inputs influence neuronal activity

* can be fitted to "resting state" data but not
necessarily

Daunizeau et al, 2009
Friston et al, 2008

 DEM optimization scheme

Li etal. 2011, Neurolmage



Spectral DCM for ,Resting Stare’

o Alternative Approach to Stochastic Data

o True and MAP connections
o Examine 2" order statistics in response to noise input
o deterministic model that generates predicted crossed mﬁ
spectra in a distributed neuronal network or graph o mﬂ -
o finds the effective connectivity among hidden neuronal
states that best explains the observed functional )

-0.4

connectivity among hemodynamic responses CEr e s e T

Prediction and response

0.6 0.06

o advantage:
= replaces an optimisation problem wrt. stochastic
differential equations with a deterministic approach BN ..
from linear systems theory - computationally very £

-0.02f
b2

efficient

S\ S
o=

Y
-0.04 1
}

o disadvantages: 0 o e
= assumes stationarity (as do other rsfMRI methods)

Friston et al. 2014, Neurolmage
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cross-spectra

= inverse Fourier
transform of cross-
correlation

cross-correlation

= generalized form of
correlation (at zero lag,
this is the conventional
measure of functional
connectivity)

Models of effective connectivity among hidden states causing observed responses

State-space model
()= £ (x,0)+ (1)

W) = g(x,0) +e(t)

()t -)") = p,(7.60) = F'(g,(@.6))
(8()-e(t 1)) = p.(z,0) =F'(g,(®,0))

Alw)= Z;_. ae™

F '

Convolution kernel representation Spectral representation Autoregressive representation Spectral representation
Functional Taylor expansion Convolution thearem Yule Walker equations Convolution theorem
()= k(D) R (1) +elt) Y(0) = K(0)-V(o) + E(w) ¥6)=3"" ay(t—i)+z(0) ¥(o) = A(@)-Y(w)+ Z(o)
x(r)=2,g-exp(r-2,f) K(w)=F(x(1)) 0§-a+z Alw) = F([a,.....a,])
Cross-covariance Cross-spectral density Auto-regression coefficients Directed transfer functions
p)={y0)-yt-7)) (w)=(7(m>-¥(w)‘) a=(55) () Y(w) = S(@)- Z(®)
=Kx(®p, Bx(-1)+p, =K(o)-g, K(o) 2 =p" [P 2,1 S(w) = (I - A(@))™
< A 1 Y
Cross-correlation Auto-correlation Granger causality

_lg@F
g(@)g, (@)

pU(r) (T =T mTy o _Isﬂ(m) |2
'= 0.0 c,=(I-a)y'(I-a) In| 1 _g,(a))

Measures of (second-order) functional connectivity or statistical dependence among Spa

/

Oppenheimer & Shafer for

Ref Friston et al. 2014, Neurolmage
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Learning of dynamic audio-visual associations

]
I ——CS
Conditioning Stimulus Target Stimulus _ . _ 1
Fmmmmm o — = - 1 N[ 1 —ocs,
| [ 0.8
! % or % : L r 1 r
| —
I __________ I 8 0.
': S thndntlh fHHH
: ,’////, o 0.
I:_ _____ I/ If_’l__l_l- u a L _ L
CS | 1S, , Respons

| . | ) X // } 0.2
! ! ! ! e 77 | 1 1 1
0 200 400 600 800 2000 B - B

+650 0 - : : - :

Time (ms) 0 200 400 600 800 1000
trial

den Ouden et al. 2010, J. Neurosci.




Hierarchical Bayesian learning model

prior on volatility

volatility

plk) o1
p(vt+l | Vtﬂk)N N(Vt,GXp(k))

plr,. | 7,,v,)~ Dirlr,,exp(v,))

probabilistic association

observed events

Behrens et al. 2007, Nat. Neurosci.




Explaining RTs by different learning models

Reaction times 1r

0.8f
440} §
— 430} — 0.
E 420F o [
'n_: } 0.4
410} L
0 5 9

= True

==Bayes Vol
= HMM fixed
===HMM learn

400 0.2p
390 0'1
. 0 1
400 440 480 520 560 600
p(outcome) Trial
. . 0.7 - . . .
5 alternative learning models: Bayesian model selection:
0.6
 categorical probabilities S o5 hierarchical Bayesian model
o Y
* hierarchical Bayesian learner 8 0, performs best
(3]
c
* Rescorla-Wagner S 0.3
g
° b
L

Hidden Markov models 0.2 4
(2 variants) 0.1
0 | [ ]

Categorical Bayesian HMM (fixed) HMM (Iearn) Rescorla-
model learner Wagner

den Ouden et al. 2010, J. Neurosci.




Prediction error (PE) activity in the putamen

PE during active
sensory learning

PE during incidental
sensory learning

den Ouden et al. 2009,
Cerebral Cortex

PE during
reinforcement learning PE = “teaching signal” for
| synaptic plasticity during
O'Doherty et al. learning

2004, Science

Could the putamen be regulating trial-by-trial changes of
task-relevant connections?




Prediction errors control plasticity during adaptive cognition

|
Hierarchical
Bayesian learning
e Modulation of visuo- model
motor connections by
striatal prediction error .
activity \ 4
PUT
¢ Influence of visual areas
on premotor cortex: »=0.010 »=0.017
— stronger for surprising PMd
stimuli J
— weaker for expected
stimuli
PPA * > FFA

den Ouden et al. 2010, J. Neurosci .




Generative embedding (unsupervised): detecting patient subgroups

step1 — step 2 — @ step 3 — A—B
W embedding

extraction modellin
. www« A e
Sl ) o - . m— W
@ B—C
measurements from an time series in subject-specific representation in
individual subject regions of interest generative model model-based feature space

- 1 o
T S
@ step 6 — 3 step 5 — 10,0 step 4 —
interpretation o validation v, o & clustering
: Foe
370 &= Il & [ ¢
© I R
< 0
jointly discriminative agreement with emerging groups of similar
connection strengths? aetiology or clinical facts? subjects?

Brodersen et al. 2014, Neurolmage: Clinical




Generative embedding: DCM and variational Gaussian Mixture Models

Supervised: Unsupervised: @
SVM classification GMM clustering

1.

78% g | Qg 1

0.8 & 100}
o =
3 0.6| 3
2 0.4 8
= =
EO.Z- _8) 0 0

) 123456738 123456738

regional - functional - effective . number of clusters number of clusters

activity connectivity connectivity

4 y

e 42 controls vs. 41 schizophrenic patients
* fMRI data from working memory task (Deserno et al. 2012, J. Neurosci)

Brodersen et al. (2014) Neurolmage: Clinical
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Detecting subgroups of patients in schizophrenia

]
50
3
S 40
o three distinct subgroups (total N=41) 2 30
()
o subgroups differ (p < 0.05) wrt. negative symptoms on the % 20
positive and negative symptom scale (PANSS) £ 40
(@)}
O
0
g 4-[\ o
PC J=——="dLPrC J
VC «

Brodersen et al. (2014) Neurolmage: Clinical

Optimal
cluster
solution

1234

>y

PANSS-NS
NN W
o 0O

—
o)

$

t

123
cluster
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