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Advanced	issues	in	fMRI	sta1s1cs	

•  Nonparametric	Inference	
– What	if	I	don’t	trust	my	assump1ons?	

•  Power	
– What’s	the	chance	of	finding	my	effect?	(pre-data)	

•  Meta-Analysis	
– What	does	the	literature	say?	
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Nonparametric Inference 
•  Parametric methods 

– Assume distribution of 
statistic under null 
hypothesis 

– Needed to find P-values, uα 

•  Nonparametric methods 
– Use data to find  

distribution of statistic 
under null hypothesis 

– Any statistic! 

5% 

Parametric Null Distribution 

5% 

Nonparametric Null Distribution 
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Permutation Test 
Toy Example 

•  Data from tiny pharmaceutical trial 
•  2 groups, 3 subjects each!  
•  Drug A & B; does A increase (BOLD) response? 

6 subjects, collected interleaved… ABABAB 
 

•  Null hypothesis Ho  
–  No experimental effect, A & B labels arbitrary 

•  Statistic 
–  Mean difference  

A B A B A B 
103.00 90.48 99.93 87.83 99.76 96.06 
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Permutation Test 
Toy Example 

•  Under Ho 
– Consider all equivalent relabelings 

AAABBB ABABAB BAAABB BABBAA 

AABABB ABABBA BAABAB BBAAAB 

AABBAB ABBAAB BAABBA BBAABA 

AABBBA ABBABA BABAAB BBABAA 

ABAABB ABBBAA BABABA BBBAAA 
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Permutation Test 
Toy Example 

•  Under Ho 
– Consider all equivalent relabelings 
– Compute all possible statistic values 

AAABBB   4.82 ABABAB   9.45 BAAABB  -1.48 BABBAA  -6.86 

AABABB  -3.25 ABABBA   6.97 BAABAB   1.10 BBAAAB   3.15 

AABBAB  -0.67 ABBAAB   1.38 BAABBA  -1.38 BBAABA   0.67 

AABBBA  -3.15 ABBABA  -1.10 BABAAB  -6.97 BBABAA   3.25 

ABAABB   6.86 ABBBAA   1.48 BABABA  -9.45 BBBAAA  -4.82 
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Permutation Test 
Toy Example 

•  Under Ho 
– Consider all equivalent relabelings 
– Compute all possible statistic values 
– Find 95%ile of permutation distribution 

AAABBB   4.82 ABABAB   9.45 BAAABB  -1.48 BABBAA  -6.86 

AABABB  -3.25 ABABBA   6.97 BAABAB   1.10 BBAAAB   3.15 

AABBAB  -0.67 ABBAAB   1.38 BAABBA  -1.38 BBAABA   0.67 

AABBBA  -3.15 ABBABA  -1.10 BABAAB  -6.97 BBABAA   3.25 

ABAABB   6.86 ABBBAA   1.48 BABABA  -9.45 BBBAAA  -4.82 
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Permutation Test 
Toy Example 

•  Under Ho 
– Consider all equivalent relabelings 
– Compute all possible statistic values 
– Find 95%ile of permutation distribution 

AAABBB   4.82 ABABAB   9.45 BAAABB  -1.48 BABBAA  -6.86 

AABABB  -3.25 ABABBA   6.97 BAABAB   1.10 BBAAAB   3.15 
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Permutation Test 
Toy Example 

•  Under Ho 
– Consider all equivalent relabelings 
– Compute all possible statistic values 
– Find 95%ile of permutation distribution 

0 4 8 -4 -8 



Permuta1on	vs.	Sign	Flipping	
•  For	2	groups,	or	for	a	correla1on…	permute	
•  For	a	1-sample	t-test…	what	can	you	permute?	
•  Sign	flipping	

– Allows	a	‘permuta1on’	test	with	1	group	data	
–  Jus1fied	by	symmetrically	distributed	errors	

Permuta(on	 Sign	Flipping	



Multiple Tests: 
What is “A False Positive”? 

•  False Discovery Rate (FDR) 
– Expected proportion of false positives among detections 
– Compute from voxel- , peak- or cluster-wise uncorrected P-values 

•  Familywise Error Rate (FWE) 
– Chance of one or more false positives 

 FWE(u)  = P(One or more false positives | Ho) 
    = P(Max voxel above threshold u | Ho) 
    = P( max T ≥ u | Ho) 

FWE-corrected		
thresholds	/	P-values		
just	like	uncorrected!	 5% 

Ho Maximum Distribution 

5% 

Ho Distribution (1 voxel) 

Uncorr:	Tail	area	on	1-voxel	null	 FWE-corr:	Tail	area	on	max.	null	
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Controlling FWE: Permutation Test 

•  Parametric methods 
– Assume distribution of 

max statistic under null 
hypothesis 

•  Nonparametric methods 
– Use data to find  

distribution of max statistic 
under null hypothesis 

– Again, any max statistic! 

5% 

Parametric Null Max Distribution 

5% 

Nonparametric Null Max Distribution 
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Permutation Test 
Smoothed Variance t 

•  Collect max distribution 
– To find threshold that controls FWE 

•  Consider smoothed variance t statistic 

t-sta%s%c	variance	

mean	difference	
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Permutation Test 
Smoothed Variance t 

•  Collect max distribution 
– To find threshold that controls FWE 

•  Consider smoothed variance t statistic 

Smoothed	
Variance	
t-sta%s%c	

mean	difference	
smoothed	
variance	
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Permutation Test 
Strengths 

•  Requires only assumption of exchangeability 
– Under Ho, distribution unperturbed by permutation 
– Allows us to build permutation distribution 

•  Subjects are exchangeable 
– Under Ho, each subject�s A/B labels can be 

flipped 
•  fMRI scans not exchangeable under Ho 

– Due to temporal autocorrelation 
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Permutation Test 
Limitations 

•  Computational Intensity 
– Analysis repeated for each relabeling 
– Not so bad on modern hardware 

•  No analysis discussed below took more than 2 minutes 

•  Implementation Generality 
– Each experimental design type needs unique code 

to generate permutations 
•  Not so bad for population inference with t-tests 
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Permutation Test 
Example 

•  fMRI Study of Working Memory    
–  12 subjects, block design  Marshuetz et al (2000) 
–  Item Recognition 

•  Active: View five letters, 2s pause, 
 view probe letter, respond 

•  Baseline: View XXXXX, 2s pause, 
 view Y or N, respond 

•  Second Level RFX 
–  Difference image, A-B constructed 

for each subject 
–  One sample, smoothed variance t test 

D 

yes UBKDA 

Active 

N 

no XXXXX 

Baseline 
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Permutation Test 
Example 

•  Permute! 
– 212 = 4,096 ways to flip 12 A/B labels 
– For each, note maximum of t image 
. 

Permutation Distribution 
Maximum  t 

Maximum Intensity Projection 
Thresholded t 
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Permutation Test 
Example 

•  Compare with Bonferroni 
– α = 0.05/110,776 

•  Compare with parametric RFT 
– 110,776  2×2×2mm voxels 
– 5.1×5.8×6.9mm FWHM smoothness 
– 462.9  RESELs 



20 

t11 Statistic, RF & Bonf. Threshold t11 Statistic, Nonparametric Threshold 

uRF   = 9.87 
uBonf = 9.80 
5 sig. vox.  

uPerm = 7.67  
 
58 sig. vox. 

Smoothed Variance t Statistic, 
Nonparametric Threshold 

378 sig. vox. 

Test Level vs. t11 Threshold 



Does this Generalize? 
RFT vs Bonf. vs Perm. 

  t Threshold 
(0.05 Corrected) 

 df RF Bonf Perm 
Verbal Fluency 4 4701.32 42.59 10.14 
Location Switching 9 11.17 9.07 5.83 
Task Switching 9 10.79 10.35 5.10 
Faces: Main Effect 11 10.43 9.07 7.92 
Faces: Interaction 11 10.70 9.07 8.26 
Item Recognition 11 9.87 9.80 7.67 
Visual Motion 11 11.07 8.92 8.40 
Emotional Pictures 12 8.48 8.41 7.15 
Pain: Warning 22 5.93 6.05 4.99 
Pain: Anticipation 22 5.87 6.05 5.05 

 



RFT vs Bonf. vs Perm. 
  No. Significant Voxels 

(0.05 Corrected) 
  t SmVar t 
 df RF Bonf Perm Perm 

Verbal Fluency 4 0 0 0 0 
Location Switching 9 0 0 158 354 
Task Switching 9 4 6 2241 3447 
Faces: Main Effect 11 127 371 917 4088 
Faces: Interaction 11 0 0 0 0 
Item Recognition 11 5 5 58 378 
Visual Motion 11 626 1260 1480 4064 
Emotional Pictures 12 0 0 0 7 
Pain: Warning 22 127 116 221 347 
Pain: Anticipation 22 74 55 182 402 

 



Null	Data	Evalua1on	of	RFT	
•  Evalua1on	of	RFT	on	100’s	res1ng	state	datasets,	w/	
various	fake	designs	
–  FWE	not	controlled	for	CFT	P=0.01!			(P=0.001	not	so	bad)	
–  FWE	OK	for	voxelwise	RFT	(not	shown)	

Eklund,	Nichols,	Knutsson	(2015).	Can	parametric	sta1s1cal	methods	be	trusted	for	fMRI	based	group	studies?	PDF		
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Using SnPM to Assess 
Reliability with Small Groups 

•  Consider n=50 group study 
– Event-related Odd-Ball paradigm, Kiehl, et al. 

•  Analyze all 50 
– Analyze with SPM and SnPM, find FWE thresh. 

•  Randomly partition into 5 groups 10 
– Analyze each with SPM & SnPM, find FWE 

thresh 
•  Compare reliability of small groups with full 

– With and without variance smoothing 
. Skip 
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SPM t11:  5 groups of 10 vs all 50 
5% FWE Threshold  

10 subj 10 subj 10 subj 

10 subj 10 subj all 50 

T>10.93 T>11.04 T>11.01 

T>10.69 T>10.10 

2 8 11 15 18 35 41 43 44 50 1 3 20 23 24 27 28 32 34 40 9 13 14 16 19 21 25 29 30 45 

4 5 10 22 31 33 36 39 42 47 6 7 12 17 26 37 38 46 48 49 25 

T>4.09 

all 50 
Arbitrary thresh of 9.0 

T>9.00 
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T>4.09 

SnPM t:  5 groups of 10 vs. all 50 
5% FWE Threshold 

10 subj 10 subj 10 subj 

10 subj 10 subj 

T>7.06 T>8.28 T>6.3 

T>6.49 T>6.19 

all 50 

2 8 11 15 18 35 41 43 44 50 1 3 20 23 24 27 28 32 34 40 9 13 14 16 19 21 25 29 30 45 

4 5 10 22 31 33 36 39 42 47 6 7 12 17 26 37 38 46 48 49 Arbitrary thresh of 9.0 

T>9.00 
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10 subj 10 subj 10 subj 

10 subj 10 subj 
Arbitrary thresh of 9.0 

T>9.00 

all 50 

SnPM SmVar t:  5 groups of 10 vs. all 50 
5% FWE Threshold 

T>4.69 T>5.04 T>4.57 

T>4.84 T>4.64 

2 8 11 15 18 35 41 43 44 50 1 3 20 23 24 27 28 32 34 40 9 13 14 16 19 21 25 29 30 45 

4 5 10 22 31 33 36 39 42 47 6 7 12 17 26 37 38 46 48 49 



Nonparametric Conclusions 

•  Nonparametric Permutation 
– Good when Normality is question 
– Good with tiny group inference & variance 

smoothing 

•  Come to practical for more! 
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Advanced	issues	in	fMRI	sta1s1cs	

•  Nonparametric	Inference	
•  Power	
•  Meta-Analysis	



Power: 1 Test 

•  Power:	
Probability	of	rejec1ng	
H0	when	HA	is	true	

•  Must	specify:	
•  Sample	size	n	
•  Level	α	

(allowed	false	posi1ve	rate)	
•  Standard	devia1on	σ	

(popula1on	variability;	not	StdErr)	
•  Effect	magnitude	Δ	

•  Last	two	can	be	replaced	
with	
•  Effect	size	δ	=	Δ/σ	

0	 2	 4	 6	 8	-4	 -2	0	

0.05	

0.1	

0.15	

0.2	

0.25	

0.3	

0.35	

0.4	

α	

Power 

Null Distribution Alternative Distribution 



Power:		Sta1s1c	vs.	Data	Units	
	•  10	subjects	

•  %	BOLD	stdev	σ	=	0.5	

−5 0 5 10

α = 0.050
T thresh = 1.83

Statistic Value
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−1 −0.5 0 0.5 1 1.5 2
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Percent Change
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One-Sample	T-test…	

Reject	H0	if…	

x̄ � t

⇤
↵ ⇥ s/

p
n

Equivalently,	reject	H0	if…	

= t⇤↵



Power	&	Effect	Magnitude	
	•  10	subjects	

•  %	BOLD	stdev	σ	=	0.5	
•  True	%BOLD	
Δ	=	0.01,	0.2,	0.5	

•  Effect	Size	δ	=	Δ/σ	
δ	=	0.02,	0.4,	1.0	

−1 −0.5 0 0.5 1 1.5 2
Percent Change

d
e

n
si

ty

α = 0.050

∆ thresh = 0.29

∆ = 0.5

Power = 89.75%

−1 −0.5 0 0.5 1 1.5 2
Percent Change

d
e

n
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ty

α = 0.050

∆ thresh = 0.29

∆ = 0.0

Power = 5.63%

−1 −0.5 0 0.5 1 1.5 2
Percent Change

d
e

n
si

ty

α = 0.050

∆ thresh = 0.29

∆ = 0.2

Power = 31.75%

...	assuming	these	are	the	right	numbers!	



Power: 100,000 Tests? 
 •  Mul1ple	tes1ng			(easy	part)	

– Set	α	to	reflect	mul1plicity	
–  If	FWE	corrected	is	typically	t*=5,	then	α	=	0.00036		

•  Alterna1ve:	δ1,	δ2,	δ3,	…,	δ99,999,	δ100,000		(hard	part)	
– Must	consider	all	an1cipated	alterna1ves	
– These	10	voxels	ac1ve,	and	those	other	20,	and…	
– Oh,	and	don’t	forget	to	specify	σ1,	σ2,	σ3	…	too!		
	

•  In	prac1ce…	
– Base	power	on	extracted	summary	values	
– Corresponds	to	a	clinical	trial’s	“primary	outcome”	
– Come	to	prac1cal	to	see	the	mechanics	

But	see…	 	fMRIpower: 	hvp://fmripower.org	
	 	 	PowerMap: 	hvp://sourceforge.net/projects/powermap	
	 	 	NeuroPower: 	hvp://neuropower.shinyapps.io/neuropower		



fMRIpower	tool	
	hvp://fmripower.org	

	for	both	SPM	&	FSL	



Voxel-wise Power 
Analyses (with RFT) 

PowerMap 
tool 
 
http://
sourceforge.net/
projects/powermap!

S	Hayasaka,	AM	Peiffer,	CE	Hugenschmidt,	PJ	Laurien1.	Power	and	sample	size	calcula1on	for	neuroimaging	studies	by	
non-central	random	field	theory.	NeuroImage	37	(2007)	721–730	



NeuroPower	
	•  Effect	

prevalance	
and	effect	size	
es1mated	
from	peaks	
only	

•  Then	
computes	
power	for	
given	number	
of	subjects,	
peak	
threshold	

http://neuropower.shinyapps.io/neuropower	



Power	Dangers	
	•  Retrospec1ve	Power	

– Power	is	a	probability	of	a	future	true	posi1ve	
– Can’t	take	current	data	(e.g.	t=1.3)	and	say	“What	
was	my	power	for	this	result?”	

•  Es1ma1ng	Effect	Sizes	
– Voodoo	correla1ons!	

•  Effect	size	at	peak	is	biased	
–  Circularly	defined	as	the	best	effect	

– Must	use	independent	ROIs	
•  Independent	data,	contrasts	
•  Anatomical	ROI	

Puzzlingly high correlations in fMRI studies of emotion, personality, and social cognition. Persp. on Psych. Science, 4, 274-290	



Power	&	Replicability	
	•  I	got	a	significant	result,	who	cares	about	

power!?	
•  Law	of	Small	Numbers	aka	“Winner’s	Curse”	

– Small	studies	over-es1mate	effect	size	
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Sample Size 
(Log of Total N in Meta Analysis) 

¨  256 meta analyses for a dichotomous effect 
(odds ratio) from Cochrane database 

¨  Low N studies: At the best 
þ  Have low power 

i.e. less likely to be positive 
þ  But if are positive, likely due to 

þ  Randomly high effect or 
þ  Randomly small variance 

¨  Low power = hard to replicate! 

Ioannidis	(2008).	“Why	most	discovered	true	associa1ons	are	inflated.”	Epidemiology,	19(5),	640-8.	



Low	N	studies:	At	the	worst	
	•  Suppressed	studies	&	Biased	effects	

– P>0.05	not	published	
– Biases	that	afflict	small	studies	more	than	large	
studies	
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File	drawer	problem	
(Unpublished	non-significant	studies)	

Bias	
(Fishing	or	Vibra1on	Effects)	



Vibration Effects 
 §  Sloppy	or	nonexistent	analysis	protocols	

	
– You	stop	when	you	get	the	result	you	expect	
– These	“vibra1ons”	can	only	lead	to	inflated	false	
posi1ves	

•  Afflicts	well-intended	researchers	
– Mul1tude	of	preprocessing/modelling	choices	

•  Linear	vs.	non-linear	alignment	
•  Canonical	HRF?	Deriva1ves?	FLOBS?	

“Try voxel-wise whole brain, then cluster-wise, then if not getting good 
results, look for subjects with bad movement, if still nothing, maybe try a 
global signal regressor; if still nothing do SVC for frontal lobe, if not, 
then try DLPFC (probably only right side), if still nothing, will look in 
literature for xyz coordinates near my activation, use spherical SVC… 
surely that’ll work!” 

Does	your	lab	
have	wri9en	
protocols?	



Power	failure:	Buvon	et	al.	

•  Meta-Analysis	of	(non-imaging)	Neuroscience	Meta-Analyses	
•  Recorded	median	power	per	meta-analysis	

– Median	median	power	21%	

Buvon,	et	al.	(2013).	Power	failure:	why	small	sample	size	undermines	the	reliability	of	neuroscience.	Nat.	Rev.	Neuros,	14(5),	365–76.		

	
50%	of	all	

neuroscience	
studies	have		

at	most	a	1-in-5	
chance	of	
replica1ng!	



Buvon	et	al’s	Recommenda1ons	

•  Do	power	calcula1ons	
•  Disclose	methods	&	findings	transparently	
•  Pre-register	your	study	protocol	and	analysis	plan	
•  Make	study	materials	and	data	available	

–  Check	out	hvp://neurovault.org	!	
–  See	also	Brain	Imaging	Data	Structure	
															hvp://bids.neuroimaging.io 		

•  Work	collabora1vely	to	increase	power	and	
replicate	findings	

Buvon,	et	al.	(2013).	Power	failure:	why	small	sample	size	undermines	the	reliability	of	neuroscience.	Nat.	Rev.	Neuros,	14(5),	365–76.		



Power	Conclusions	

•  Power	=	Replicability	
– Best	gauge	on	whether	you’ll	find	the	effect	again	

•  Whole	image-wise	power	possible	
– With	either	fMRIpower	&	powermap	

•  “Targeted	outcome”	power	prac1cal	
– Based	on	effect	size	at	one	loca1on	
– But	be	aware	of	circularity	issues	



Advanced	issues	in	fMRI	sta1s1cs	

•  Nonparametric	Inference	
•  Power	
•  Meta-Analysis	



Overview	

•  Non-imaging	meta-analysis	
•  Menu	of	meta-analysis	methods	

– ROI’s,	IBMA,	CBMA	

•  CBMA	details	
– Kernel-based	methods	–	What’s	in	common	
– m/ALE,	M/KDA	–	What’s	different	

•  Limita1ons	&	Thoughts	



Stages	of	(non-imaging)	Meta-Analysis	

1.  Define	review's	specific	objec1ves.	
2.  Specify	eligibility	criteria.	
3.  Iden1fy	all	eligible	studies.	
4.  Collect	and	validate	data	rigorously.	
5.  Display	effects	for	each	study,	with	measures	of	

precision.	
6.  Compute	average	effect,	random	effects	std	err	
7.  Check	for	publica1on	bias,	conduct	sensi1vity	

analyses.	

Jones,	D.	R.	(1995).	Meta-analysis:	weighing	the	evidence.	StaHsHcs	in	Medicine,	14(2),	137–49.		



Methods	for	(non-imaging)	Meta-Analysis	(1)	
	•  P-value	(or	Z-value)	combining	

–  Fishers	(≈	average	–log	P)	
–  Stouffers	(≈	average	Z)	
– Used	only	as	method	of	last	resort	

•  Based	on	significance,	not	effects	in	real	units	
•  Differing	n	will	induce	heterogeneity		(Cummings,	2004)	

•  Fixed	effects	model	
–  Requires	effect	es1mates	and	standard	errors		

•  E.g.	Mean	survival	(days),	and	standard	error	of	mean	
– Gives	weighted	average	of	effects	

•  Weights	based	on	per-study	standard	errors	
– Neglects	inter-study	varia1on	

Cummings	(2004).	Meta-analysis	based	on	standardized	effects	is	unreliable.		Archives	of	Pediatrics	&	Adolescent	
Medicine,	158(6),	595–7.		



Methods	for	(non-imaging)	Meta-Analysis	(2)	
	•  Random	effects	model	

– Requires	effect	es1mates	and	standard	errors		
– Gives	weighted	average	of	effect	

• Weights	based	on	per-study	standard	errors	and	
inter-study	varia1on	

– Accounts	for	inter-study	varia1on	
•  Meta	regression	

– Account	for	study-level	regressors	
– Fixed	or	random	effects	



Neuroimaging	Meta-Analysis	
Approaches	(1)	

•  Region	of	Interest	
– Tradi1onal	Meta-Analysis,	on	mean	%BOLD	&	stderr	
– Almost	impossible	to	do	

•  ROI-based	results	rare	(excep1on:	PET)	
•  Different	ROIs	used	by	different	authors	
•  Peak	%BOLD	useless,	due	to	voodoo	bias	

–  Peak	is	overly-op1mis1c	es1mate	of	%BOLD	in	ROI	

MNI	x-axis	

True	
%BOLD	

Es(mated	
%BOLD	



Neuroimaging	Meta-Analysis	
Approaches	(2)	

•  Intensity-Based	Meta-Analysis	(IBMA)	
– With	P/T/Z	Images	only	

•  Only	allows	Fishers/Stouffers	
– With	contrast	images	only	

•  Only	allows	random-effects	model	without	weights	
–  Can’t	weight	by	sample	size!	

– With	contrast	and	standard	error	images	
•  SPM’s	spm_mfx	and	FSL’s	FEAT/FLAME:	

–  2nd-level	:	Combining	subjects	
–  3rd-level	:	Combining	studies	

•  Allows	meta-regression	
– But	image	data	rarely	shared	

Best	prac%ce	J	

Not	best	prac%ce	L	

Not	best	prac%ce	L	

Bad	pracHce	L	



Neuroimaging	Meta-Analysis	
Approaches	(3)	

•  Coordinate-Based	Meta-Analysis	(CBMA)	
– x,y,z	loca1ons	only	

•  Ac1va1on	Likelihood	Es1ma1on	(ALE)	

•  Mul1level	Kernel	Density	Analysis	(MKDA)	

– x,y,z	and	Z-value	
•  Signed	Difference	Mapping	(SDM)	

Turkeltaub	et	al.	(2002).	Meta-analysis	of	the	func1onal	neuroanatomy	of	single-word	reading:	method	and	
valida1on.	NeuroImage,	16(3),	765–780.	
Eickhoff	et	al.	(2009).	Coordinate-based	ac1va1on	likelihood	es1ma1on	meta-analysis	of	neuroimaging	data:	a	
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CMBA	Kernel	Methods	
	•  Create	study	maps	

–  Each	focus	is	replaced	with	kernel	
•  Important	details	on	kernel	overlap	

•  Create	meta	maps	
–  Study	maps	combined	

•  Inference	
–  Tradi1onal	voxel-wise	or	cluster-wise	

•  Voxel-wise	–	FDR	or	FWE	
•  Cluster-wise	–	FWE		

– Monte	Carlo	test	
•  H0:	no	consistency	over	studies	
•  Randomly	place	each	study’s	foci,	recreate	meta	maps	
•  Not	actually	a	permuta1on	test	(see	Besag	&	Diggle	(1977))	

Besag	&	Diggle	(1977).	Simple	Monte	Carlo	tests	for	spa1al	pavern.	JRSS	C	(Applied	StaHsHcs),	26(3),	327–333.		

Wager	et	al.	(2007).	SCAN,	2(2),	150–8.		



Study 1 Study 1 
Study 2 
Study 3 

Kernel	Methods	History	–	m/ALE	

Study 2 
Study 3 

ALE	–	Ac1va1on	Likelihood	Es1ma1on	
(Turkeltaub	et	al.,	2002)	

ALE	per-study	map	

ALE	map	kernel	FHWM	f	

ALE	interpreta1on	for	single	focus	(					)	
	Probability	of	observing	a	focus	at	that	loca1on	(				)	

ALE	combining	
	Probability	of	union	of	independent	events…	
	ALE(p1,p2)						=	p1	+	p2				−				p1×p2	
	ALE(p1,p2,p3)	=	p1	+	p2	+	p3				−				p1×p2	−	p1×p3	−	p2×p3				+			p1×p2×p3	

ALE	interpreta1on:	
Probability	of	observing	one	or	more	foci	at	a	given	loca1on		
based	on	a	model	of	Gaussian	spread	with	FWHM	f	



Study 1 Study 1 
Study 2 
Study 3 

Kernel	Methods	History	–	m/ALE	

Study 2 
Study 3 

ALE	–	Ac1va1on	Likelihood	Es1ma1on	
(Turkeltaub	et	al.,	2002)	

ALE	per-study	map	

ALE	map	kernel	FHWM	f	

Problem	with	first	ALE	
	Single	study	could	dominate,	if	lots	one	has	lots	of	points	

Modified	ALE	(Eickhoff	et	al.,	2009;	Eickhoff	et	al.,	2012)	
	Revised	Monte	Carlo	test	accounts	for	studies	
	 	Fix	foci,	randomly	sample	each	map	
	Adapt	kernel	size	f	to	study	sample	size	
	Voxel-wise	test		–		no	Monte	Carlo!	
	Cluster-wise	test	–	s1ll	requires	Monte	Carlo	



Study 1 
Study 2 
Study 3 

Study 1 

MKDA	map	–	weighted	average	of	study	maps	

Study 1 
Study 2 
Study 3 

Kernel	Methods	History	–	M/KDA	

Same	problem	with	individual	
profligate	studies	
MKDA	(Kober	et	al.,	2008)	

	Truncated	study	maps	
	Monte	Carlo	test	
	 	Moves	clusters,	not	
	 	individual	foci 		

MKDA	(unweighted)	interpreta1on:	
Propor1on	of	studies	having	one	or	more	foci	within	distance	r	

Study 2 
Study 3 

KDA	–	Kernel	Density	Analysis	
(Wager	et	al.,	2004)	

KDA	per-study	map	

KDA	map	–	average	of	study	maps	

MKDA 

MKDA	–	MulHlevel	Kernel	Density	Analysis	
per-study	map	

kernel	radius	r	



CBMA	Limita1ons	
•  Effect	size	

– Non-imaging	MA	is	all	about	effect	size,	CI’s	
– What	is	the	effect	size?	

•  MKDA	–	Propor1on	of	study	result	in	neighborhood	
•  ALE	–	Probability	at	individual	voxel	one	or	foci	

– Standard	errors?		CI’s?	
– Power/sensi1vity	

•  5/10	studies	–	Great!	
•  5/100	studies	–	Not	great?	Or	subtle	evidence?	

•  Fixed	vs.	Random	Effects?	



•  An	effect	that	
generalizes	to		
the	popula1on	
studied	

•  Significance	
rela1ve	to	
between-study	
varia1on	

Study 1 

Study 2 

Study 3 

Study 4 

Study 5 

Study 6 

0 

Distribution of each study’s estimated effect 

Distribution of 
population effect 

σ2
FFX	

σ2
RFX	

IBMA	
Random	Effects?	

%	BOLD		



Reverse Inference & Brain Imaging 
•  Politics study from 2007 

– Voters viewed images of 
Democratic candidates (N=20) 

– Subset that disliked Clinton: 
•  “…exhibited significant activity in the 

anterior cingulate cortex, an 
emotional center”…, activated when 
one “feels compelled to act in two 
different ways but must choose one.”  

Iacoboni, et al., “This is your brain on politics”.  OP-ED, The New York Times, Nov. 11, 2007	



Reverse Inference & Brain Imaging 
•  Logic 

– Emotion conflict resolution task 
è Anterior Cingulate activation 

                                   known from the literature 

– Hillary Clinton  
è Anterior Cingulate activation 

                               observed in this experiment 

– Ergo 
è Hillary Clinton induces emotional conflict 

è Faulty Reverse Inference 
– High P(A.C. Act. | Emot. Conf. ) doesn’t imply  

high P(Emot. Conf. | A.C. Act.)  !!! 

Iacoboni, et al., The New York Times, 
Nov. 11, 2007	



Reverse Inference: Correctly! 
•  Bayes Rule 

– Cognitive Domain C, Activation A 
   

 
 summation over all cognitive domains! 

•  Can we find “P(Emot. Conflict | ACC Act.)”? 
– Need to run 100’s of experiments! 
– Or, use meta analysis! 
– But best Neuroimaging Meta Analysis databases 

are still limited 
•  BrainMap.org has 2,355 studies (started in 1988) 
•  Pubmed finds 21,017 refs “fMRI” in title/abstract 

P(C=c|A) = 
    P(A|C=c) P(C=c) 
 

 Σc* P(A|C=c*)P(C=c*) 



Neurosynth 

•  Lexicographical Analysis of papers 
– Harvests x,y,z coordinates from tables 
– Records word frequencies of body text 

•  Not curated like BrainMap.org, but 
automated 
– BrainMap – 2k studies 20 years 
– Neurosynth – 4k studies in < 12 months 

•  Using keywords, allows reverse inference 

Yarkoni, Poldrack, Nichols, Essen, & Wager (2011). Large-scale automated synthesis of 
human functional neuroimaging data. Nature Methods, 8(8), 665-670.  www.neurosynth.org	

4,393 studies (in < 12 months!)	



Neurosynth Methods 
 •  17 Neuroscience-focused journals used 

–  Biological Psychiatry, Brain, Brain and Cognition, Brain and Language, 
Brain Research, Cerebral Cortex, Cognitive Brain Research, Cortex, 
European Journal of Neuroscience, Human Brain Mapping, Journal of 
Neurophysiology, Journal of Neuroscience, NeuroImage, NeuroLetters, 
Neuron, Neuropsychologia, & Pain.  

•  Tagging 
– Each article ‘tagged’ with psychological terms 
– Scored as high frequency (>1/1000 words) or not 

•  Coordinate harvesting 
– Tables parsed for x,y,z coordinates 

•  Not exhaustive, but already massive 
– 4,400+ studies, 145,000+ foci 



What about Anterior Cingulate? 
•  It’s  

always  
there! 

•  Finally, can do real reverse inference… 

Probability of activation over all studies	





MNI	x-axis	

•  CBMA	
– An	effect	that	
generalizes	to	the	
popula1on	studied?	

•  5/10	signif.:	OK?	
•  5/100	signif.:	OK!?	

–  Significance	rela1ve	
to	between-study	
varia1on?	

•  Significance	based	
on	null	of	random	
distribu1on	

Study 1 

Study 2 

Study 3 

Study 4 

Study 5 

Study 6 

Location of each study’s foci 

Intensity Function 
e.g. ALE 

What	is	a	
Random	Effect?	

… under Ho 



MNI	x-axis	

•  Bayesian	
Hierarchical	
Marked	Spa1al	
independent	
Cluster	Process	
– Explicitly	
parameterizes	
intra-	and	inter-
study	varia1on		

Study 1 

Study 2 

Study 3 

Study 4 

Study 5 

Study 6 

Intensity Function 

σ2
Study	

σ2
Popula1on	

What	is	a	
Random	Effect?	

Location of each study’s foci 

Kang,	Johnson,	Nichols,	&	Wage	(2011).	Meta	Analysis	of	Func1onal	
Neuroimaging	Data	via	Bayesian	Spa1al	Point	Processes.	Journal	of	
the	American	StaHsHcal	AssociaHon,	106(493),	124–134.		



CBMA	Sensi1vity	analyses	

Wager	et	al.	(2009).	Evalua1ng	the	consistency	and	specificity	of	neuroimaging	data	using	meta-analysis.	NeuroImage,	
45(1S1),	210–221.	

•  Z-scores	
should		
fall	to		
zero	with	
sample	size	

•  Meta	Diagnos1cs	
– Various	plots	assess	whether	
expected	behavior	occurs		



CBMA	File		
Drawer	Bias?	

•  What	about	
“P<0.001	
uncorrected”	
bias?	

•  Forrest	plot	
– MKDA	values	for	
right	amygdala	

– Can	explore	
different	
explana1ons	for	
the	effect	

0 20 40 60 80
Percent of studies reporting a foci

within 10mm of right amygdala

Chance: whole−brain FWE threshold

Chance: small−volume FWE threshold

Chance: half of all studies
using P<0.001 uncorrected

Chance: all studies
using P<0.001 uncorr.

Emotion Meta Analysis from 154 studies
Right Amygdala activation

Anger (26 studies)

Disgust (28 studies)

Fear (43 studies)

Happy (24 studies)

Sad (33 studies)

All (154 studies)

T.	Nichols	



Meta-Analysis	Conclusions	

•  IBMA	
– Would	be	great,	rich	tools	available	

•  CBMA	
– 2+	tools	available	
– S1ll	lots	of	work	to	deliver	best	(sta1s1cal)	
prac1ce	to	inferences	


