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Overview of SPM 
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Research Question:  
 
 
 
 
 
 
 

Where in the brain do we represent listening to sounds? 



   Image a very simple experiment& 

Time 



SINGLE VOXEL TIME SERIES& 

TIME 



   Image a very simple experiment& 

Time 

Question: Is there a change in the BOLD response between listening and rest? 
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Question: Is there a change in the BOLD response between listening and rest? 



linear model 

effects estimate 

error estimate 
statistic 

   You need a model of your data… 

! 
 



BOLD signal 
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   Explain your data…  
     as a combination of experimental manipulation, confounds and errors 

Single voxel regression model: 
regressor 
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y = x1β1 + x2β2 + e
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y = x1β1 + x2β2 + eSingle voxel regression model: 

   Explain your data…  
     as a combination of experimental manipulation,confounds and errors 
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n: number of scans 
p: number of regressors 

   The black and white version in SPM 
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The design matrix embodies all available knowledge about experimentally 
controlled factors and potential confounds.  

"  Talk: Experimental Design Wed 9:45 – 10:45 by Sandra Iglesias 
 
 

   Model assumptions 

Designmatrix 

error 
You want to estimate your parameters such that you minimize:  
 
 
 
 
 
This can be done using an Ordinary least squares estimation (OLS) assuming 
an i.i.d. error 
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error 

GLM assumes identical and independently 
distributed errors 

i.i.d. = error covariance is a scalar multiple of the identity matrix 
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e ≈ N(0,σ 2I )
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„Option 1“: Per hand 

   How to fit the model and estimate the parameters? 
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   How to fit the model and estimate the parameters? 
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ŷ = Xβ̂
e = y− ŷ

e = y− Xβ̂

min(eTe) =min((y− Xβ̂)T (y− Xβ̂))

Data predicted by our model 

Error between predicted and actual data 

Goal is to determine the betas such that 
we minimize the quadratic error 

OLS (Ordinary Least Squares) 



eTe = (y− Xβ̂)T (y− Xβ̂)

eTe = (yT − β̂T XT )(y− Xβ̂)
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β̂ = (XTX)−1XT y

OLS (Ordinary Least Squares) 
The goal is to minimize 
the quadratic error 
between data and model 
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Design space 
defined by X
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A geometric perspective on the GLM
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Correlated and orthogonal regressors 

When x2 is orthogonalized with regard to x1, 
only the parameter estimate for x1 changes, 
not that for x2! 

Correlated regressors =  
explained variance is shared between 
regressors 

121

2211

==
++=

ββ
ββ exxy

1;1 *
21

*
2

*
211

=>

++=

ββ
ββ exxy

Design space defined 
by X 



linear model 

effects estimate 

error estimate 
statistic ! 

 

…but we are dealing with fMRI data 
= + 

  We are nearly there… 



What are the problems? 
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The response of a linear time-invariant (LTI) system is the convolution of the input with the system's response to an 
impulse (delta function). 

Problem 1: Shape of BOLD response 
 



Solution: Convolution model of the BOLD response 

expected BOLD response  
= input function x impulse response 

function (HRF) ∫ −=⊗
t

dtgftgf
0

)()()( τττ

blue =  data 
green =  predicted response, taking convolved with HRF 
red =  predicted response, NOT taking into account the HRF 



Problem 2: Low frequency noise 

blue =  data 
black =  mean + low-frequency drift 
green =  predicted response, taking into account low-frequency drift 
red =  predicted response, NOT taking into account low-frequency drift 



Problem 2: Low frequency noise 

blue =  data 
black =  mean + low-frequency drift 
green =  predicted response, taking into account low-frequency drift 
red =  predicted response, NOT taking into account low-frequency drift 

Linear model 



discrete cosine transform 
(DCT) set 

Solution 2: High pass filtering 



Problem 3: Serial correlations 

non-identity non-independence 
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Problem 3: Serial correlations

•  Transform the signal into a space where the error is iid

•  Pre-whitening:  
 

1. Use an enhanced noise model with multiple error covariance 
components, i.e. e ~ N(0,σ2V) instead of e ~ N(0, σ2I).  
 

2. Use estimated serial correlation to specify filter matrix W for whitening the 
data.

WeWXWy += β

This is i.i.d 



Problem 3: How to find W " Model the noise 

Cov(e)

n: number of scans 

n 
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autocovariance 
function 

with ttt aee ε+= −1 ),0(~ 2σε Nt

1st order autoregressive process: AR(1) 



Model the noise:  Multiple covariance components 
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Estimation of hyperparameters with EM (expectation maximisation) or ReML (restricted 
maximum likelihood). 

V 

enhanced noise model error covariance components Q 
and hyperparameters 
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How do we define W ? 

•  Enhanced noise model 

•  Remember linear transform  
for Gaussians 

•  Choose W such that error  
covariance becomes spherical 

•  Conclusion: W is a simple function of V  

WeWXWy += β
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  We are there… 

= + 

•  the GLM models the effect of your experimental manipulation on the acquired data 

•  GLM includes all known experimental effects and confounds 

•  estimates effects an errors on a voxel-by-voxel basis 

 

Because we are dealing with fMRI data there are a number of problems we need to take care of: 
 
•  Convolution with a canonical HRF 
 
•  High-pass filtering to account for low-frequency drifts 

•  Estimation of multiple variance components (e.g. to account for serial correlations) 



linear model 

effects estimate 

error estimate 
statistic ! 

 

  We are there… 
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c = 1 0 0 0 0 0 0 0 0 0 0 

Null hypothesis: 01 =β
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" Talk: Statistical Inference and design efficiency. Next Talk 



So far we have looked at a single voxel… 

single voxel  
time series 

•  Mass-univariate 
approach:  
GLM applied to > 100,000 
voxels 

•  Threshold of p<0.05 more 
than 5000 voxels 
significant by chance! 

•  Massive problem with multiple 
comparisons!  

•  Solution: Gaussian random field 
theory 



Outlook: further challenges 

•  correction for multiple comparisons  " Talk: Multiple Comparisons Wed 8:30 – 9:30 
 

•  variability in the HRF across voxels   " Talk: Experimental Design Wed 9:45 – 10:45 

•  limitations of frequentist statistics   " Talk: entire Friday 

•  GLM ignores interactions among voxels  " Talk: Multivariate Analysis Thu 12:30 – 13:30 



Thank you for listening! 
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