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OVERVIEW OF SPM

Statistical parametric map (SPM)
Image time-series Kernel Design matrix
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Research Question:

Where in the brain do we represent listening to sounds?



IMAGE A VERY SIMPLE EXPERIMENT...
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SINGLE VOXEL TIME SERIES. ..




IMAGE A VERY SIMPLE EXPERIMENT...

Question: Is there a change in the BOLD response between listening and rest?
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IMAGE A VERY SIMPLE EXPERIMENT...

Question: Is there a change in the BOLD response between listening and rest?
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You need a model of your data...
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Explain your data...

as a combination of experimental manipulation, confounds and errors
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Single voxel regression model: [ [ )7 = xlﬁl + )Czﬁz + e




Explain your data...

as a combination of experimental manipulation,confounds and errors
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The black and white version in SPM

n: number of scans
p: number of regressors




Model assumptions

The design matrix embodies all available knowledge about experimentally

DeSlgﬂ matrix controlled factors and potential confounds.
—> Talk: Experimental Design Wed 9:45 — 10:45 by Sandra Iglesias

You want to estimate your parameters such that you minimize:
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This can be done using an Ordinary least squares estimation (OLS) assuming
an i.i.d. error
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GLM assumes identical and independently
distributed errors
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1.1.d. = error covariance is a scalar multiple of the identity matrix € = N(0,0’ I)

i g non-identity non-independence
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How to fit the model and estimate the parameters?
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How to fit the model and estimate the parameters?

OLS (Ordinary Least Squares)
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L )A/ =X /)) Data predicted by our model
— . €e=y— )A/ Error between predicted and actual data
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— — — 1) — Goal is to determine the betas such that
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OLS (Ordinary Least Squares)

The goal is to minimize

T ONT 0 -
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OLS (Ordinary Least Squares)

The goal is to minimize

ee=(y-XB) (y-XB) the quadaticeror
e'e=0" =B X")(y-Xp)



OLS (Ordinary Least Squares)

T A T A The goal is to minimize
_— _ — the quadratic error
€ e (y Xﬁ) (y Xﬁ) between data and model
This is a scalar and the

€T€ = (yT — [;)TXT )(y —_ X[;)) ’;rcaarlwzfr)ose of a scalaris a
ele=y"y-y'Xp-p"X"y+B X"XP



OLS (Ordinary Least Squares)

T, _ Y B X A3 the cuadraticamor
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OLS (Ordinary Least Squares)
e’e=(y-XP) (y-Xp)
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You find the extremum of
a function by taking its

—_ _2XTy + 2XTX[;) S()e;i;/?(;cive and setting it




OLS (Ordinary Least Squares)

e'e=(y-XP) (y-Xp)
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ele=y"y-y'Xp-p"X"y+B X" XP

ele=y"y-28"X"y+ B X"XP
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_ SOLUTION: OLS of the Parameters

You find the extremum of
a function by taking its

—_ _ZXTy + 2XTX[;) S()e;i;/?(;cive and setting it




A geometric perspective on the GLM

OLS estimates

B=X"X)"Xx"y

Design space
defined by X



Correlated and orthogonal regressors

Design space defined
by X
%
y=x,p+x,0,+e y:xlﬂl+x;ﬁ2*+e
:Blzﬁz:ll ,Bl>1;,3;=1

Correlated regressors = When x, is orthogonalized with regard to x;,
explained variance is shared between only the parameter estimate for x, changes,
[egressors not that for x,!



We are nearly there...

linear mode|
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..but we are dealing with fMRI data



What are the problems?
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Problem 1: Shape of BOLD response
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The response of a linear time-invariant (LTI) system is the convolution of the input with the system's response to an
impulse (delta function).




Solution: Convolution model of the BOLD response

expected BOLD response

= input function x impulse response
function (HRF)
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Problem 2: Low frequency noise

MRI Scanner Cutaway 113
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blue = data
black = mean + low-frequency drift
green = predicted response, taking into account low-frequency drift

red = predicted response, NOT taking into account low-frequency drift



Problem 2: Low frequency noise
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Linear model
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Solution 2: High pass filtering

Frequency domain
128 second High-pass filter
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Problem 3: Serial correlations

1.0 non-identity non-independence
2

t1

Cov(e) = Cov(e) =

Cov(e) = | i

£2

m: number of scans



Problem 3: Serial correlations

e Transform the signal into a space where the error is iid

This isi.i.d

i
Wy =WXB+We

e Pre-whitening:

1. Use an enhanced noise model with multiple error covariance
components, i.e. e ~ N(0,02V) instead of e ~ N(O, ¢?l).

2. Use estimated serial correlation to specify filter matrix W for whitening the
data.



Problem 3: How to find W = Model the noise

e, =ae,_, +& wih £ ~ N(0,0%)

1t order autoregressive process: AR(1)

autocovariance
function

1.4

m: number of scans



Model the noise: Multiple covariance components

) V o< Cov(e)
QNN(O,O- V) =% 20,
enhanced noise model error covariance components @

and hyperparameters
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Estimation of hyperparameters with EM (expectation maximisation) or ReML (restricted
maximum likelihood).



How do we define W/?

Enhanced noise model

Remember linear transform
for Gaussians

Choose W such that error
covariance becomes spherical

Conclusion: Wis a simple function of /

e~ N(0,0°V)

X~ N(IU,O'Z),)/ = dx
= y~ N(al,a’o”?)

We ~ N(0,0°W?°V)
=WV =1
SW=r""

Wy =WXB+We
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We are there...

* the GLM models the effect of your experimental manipulation on the acquired data
* GLM includes all known experimental effects and confounds

* estimates effects an errors on a voxel-by-voxel basis

Because we are dealing with fMRI data there are a number of problems we need to take care of;
» Convolution with a canonical HRF
* High-pass filtering to account for low-frequency drifts

» Estimation of multiple variance components (e.g. to account for serial correlations)



We are there...
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- Talk: Statistical Inference and design efficiency. Next Talk "F" —



So far we have looked at a single voxel...

o Mass-univariate

. single voxel *  Massive problem with multiple
approach: time series P | g
GLM applied to > 100,000 comparisons!
voxels

« Solution: Gaussian random field

»  Threshold of p<0.05 more theory

than 5000 voxels
significant by chance!



Outlook: further challenges

« correction for multiple comparisons

* variability in the HRF across voxels
* [imitations of frequentist statistics

» GLM ignores interactions among voxels

- Talk: Multiple Comparisons Wed 8:30 — 9:30

—> Talk: Experimental Design Wed 9:45 - 10:45

- Talk: entire Friday

- Talk: Multivariate Analysis Thu 12:30 — 13:30



THANK YOU FOR LISTENING!
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«  C(hristensen R (1996) Plane Answers to Complex Questions: The Theory of Linear Models. Springer.

Friston K] et al. (1995) Statistical parametric maps in functional imaging: a general linear approach. Human
Brain Mapping 2: 189-210.






