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Modelling fMRI timeseries from multiple subjects
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Blocked vs event-related designs

Blocked designs examine responses to series of similar stimuli
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“Epoch” vs “Event” models of blocked designs

“Epoch” model assumes constant neural processes throughout block

-----
"""
.

P = Pleasant

. . . . U = Unpleasant
“Event” model may capture state-item interactions (with longer SOAs)




Modeling blocked designs: Epochs vs events

e Blocks of trials can be modeled as boxcars
or runs of events

e BUT: interpretation of the parameter
estimates may differ

e Consider an experiment presenting words at
different rates in different blocks:

» An “epoch” model will estimate parameter
that increases with rate, because the
parameter reflects response per block

» An “event” model may estimate parameter
that decreases with rate, because the
parameter reflects response per word

Rate = 1/4s

Rate = 1/2s

p=5

0
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BOLD impulse response

e Function of blood oxygenation, flow,
volume <— Peak

e Peak (max. oxygenation) 4-6s

poststimulus; baseline after 20-30s Brief
Stimulus

e |nitial undershoot can be observed Undershoot

e Similar across V1, A1, S1...

e ... but possible differences across: 0 \ .
- other regions < Initial
- individuals Jndershoot
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BOLD impulse response

e Early event-related fMRI studies used
a long Stimulus Onset Asynchrony
(SOA) to allow BOLD response to
return to baseline

<— Peak

Brief

 However, overlap between Stimulus

successive responses at short SOAs Undershoot
can be accommodated if the BOLD
response is explicitly modeled,

particularly if responses are assumed v

to superpose linearly () \ .
Initial
Undershoot

e Short SOAs are more sensitive; see |
later 0 d 10 15 20 pgT )



General Linear (Convolution) Model

GLM for a single voxel: u(t) h(x)=3 S.f(t)
y(t) =u(®) ® h(1) + (1)

u(t) = neural causes (stimulus train) _
ut) => o (t-nT)

h(1) = hemodynamic (BOLD) response l
h) =3 610

f(1) = temporal basis functions l

yt) =¥ 5 B f(t-nT) +e(t) -

y = XR + &




General Linear Model in SPM

Stimulus l l l
every 20s

Gamma functions f.(t) of

peristimulus time t
(Orthogonalised)

Sampled every TR = 1.7s
Design matrix, X

X(O®F4(7) [ x(O®f(7) |...]

0 time {secs} 30°
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Temporal basis functions

PST (s) PST (s)
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Temporal basis functions

e Fourier Set
- Windowed sines & cosines e — e —
- Any shape (up to frequency limit) N
- Inference via F-test S~ T "
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e Finite Impulse Response ‘_}—\m

- Mini “timebins” (selective averaging) =
- Any shape (up to bin-width) M
- Inference via F-test =




Temporal basis functions

e Fourier Set/FIR ———— — =
- Any shape (up to frequency limit / bin width) A S
- Inference via F-test SN =
e Gamma Functions /\

- Bounded, asymmetrical (like BOLD)
- Set of different lags
- Inference via F-test

e “Informed” Basis Set
- Best guess of canonical BOLD response
- Variability captured by Taylor expansion
- “Magnitude” inferences via t-test...?

0 5 10 15 20 PST (s)



Informed basis set

3l . e Canonical HRF (2 gamma functions)
Canonical
= ot //
S /' \
£z |
2 1} /
.OC) ,/‘ \\
18 / %5
oC / %
T O _'// e ¥ C——
-1F
0 5 10 15 20

PST (s)



Informed basis set

3l . e Canonical HRF (2 gamma functions)
Canonical
3 \\ [l [ [] [
/ Temporal plus Multivariate Taylor expansion in:
5 2 / : - time (Temporal Derivative)
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Informed basis set

3l Canonical . Caponlcal HRF (2 gamma functions)
Temporal plus Multivariate Taylor expansion in:
5 2r - time (Temporal Derivative)
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Informed basis set

: e Canonical HRF (2 gamma functions
3f Canonical (29 )
3 \\ " " ] "

/,. Temporal plus Multivariate Taylor expansion in:

3 er / \ Dispersion - time (Temporal Derivative)

= / - width (Dispersion Derivative)
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Informed basis set

3l Canonical . Cainonlcal HRF (2 gamma functions)
Temporal plljS Multivariate Taylor expansion in:
Fl 2r Dispersion - time (Temporal Derivative)
= - width (Dispersion Derivative)
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Informed basis set

e Canonical HRF (2 gamma functions)

3r Canonical
/ Temporal plus Multivariate Taylor expansion in:
5 = Dispersion - time (Temporal Derivative)
= / - width (Dispersion Derivative)
2 1 /
2 "
U / LY * “Magnitude” inferences via
L of P i—— t-test on canonical
et - parameters (providing
> canonical is a reasonable
ok fit)
0 10 15 20 e “Latency” inferences via tests
PST (s) on ratio of derivative :

canonical parameters



Which temporal basis set?

In this example (rapid motor response to faces, Henson et al, 2001)...
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Canonical + Temporal + Dispersion + FIR

... canonical + temporal + dispersion derivatives appear sufficient to capture most activity
... may not be true for more complex trials (e.g. stimulus-prolonged delay (>~2 s)-response)

... but then such trials better modelled with separate neural components (i.e., activity no
longer delta function) + constrained HRF
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Timing issues: Sampling

TR=4s

—>

Scans

e TR for 80 slice EPI at 2 mm spacing is ~ 4s
L b Lo Lo Loy Lo




Timing issues: Sampling

Scans TR=4s

—>

e TR for 80 slice EPI at 2 mm spacing is ~ 4s
L b Lo Lo Loy Lo

e Sampling at [0,4,8,12...] post- stimulus may

miss peak signal
Stimulus (synchronous)

Sampling rate=4s
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Timing issues: Sampling

Scans TR=4s

—>

e TR for 80 slice EPI at 2 mm spacing is ~ 4s
L b Lo Lo Loy Lo

e Sampling at [0,4,8,12...] post- stimulus may
miss peak signal
Stimulus (random jitter)

n Sampling rate=2s
/X
e Higher effective sampling by: ><

1. Asynchrony; e.g., SOA=1.5TR

2. Random Jitter; e.g., SOA=(2+£0.5)TR
* Better response characterisation RN

0 5 10 15 2 pgrg)



Timing issues: Slice Timing

T1 — O s —-64 /O 64 1grii3mo (;)92 256 20 384
T
— T=16, TR=2s
T16=25s

AAAAAAAAAAAAAA

Time (s)

0 Scan 1




Timing issues: Slice Timing

. . . Top Sli Bottom Sli
“Slice-timing Problem”: TTTIIRTGT T PTE Re T
» Slices acquired at different times, yet 7‘;#?7?17""--@2‘? N e Tt
model is the same for all slices ['I'i%.ﬁﬁﬁjffffi”’ﬁ'ﬁﬁ: .. ]'
» different results (using canonical HRF) for i S e _._:@’ﬁ
different reference slices S/ SPM{t} N SPM{t}
» (slightly less problematic if middle slice is Interpolated
selected as reference, and with short TRs) ,
i
Solutions: y. .}
)
1. Temporal interpolation of data ) SPM()
... but less good for longer TRs
2. More general basis set (e.g., with temporal derivatives)

... but inferences via F-test

-/ SPM{F}

TR=3s
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Design efficiency

e HRF can be viewed as a filter
(Josephs & Henson, 1999)

* We want to maximise the signal
passed by this filter

e Dominant frequency of canonical HRF
is ~0.04 Hz

Power

= The most efficient design is a
sinusoidal modulation of neural
activity with period ~24s
(e.g., boxcar with 12s on/ 12s off)

0 0.05 0.1 0.15 02 0.25
Frequency (Hz)



Sinusoidal modulation, f = 1/33

Stimulus (“Neural”) HRF Predicted Data
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A very “efficient” design!



Blocked, epoch = 20 sec

Stimulus (“Neural”) HRF Predicted Data
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Blocked-epoch (with small SOA)

quite “efficient”



Blocked (80s), SOAmin=4s, highpass filter = 1/120s

Stimulus (“Neural”) HRF Predicted Data
/
\ pﬂ
® — '1.‘va{.'l
0 0
Time (s) D (4
0 32 64 o5 128 160 0 5 10 15 20 25 30 0 64 128
“Effective HRF” (after highpass filtering)
(Josephs & Henson, 1999)
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Very ineffective: Don’t have long (>60s) blocks!



Randomised, SOAmin=4s, highpass filter = 1/120s

Stimulus (“Neural”) HRF Predicted Data

n'l\ ﬂ.] ‘.
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Randomised design spreads power over frequencies



Design efficiency

« T-statistic for a given contrast: T = c'b / var(c'b)

* For maximum T, we want maximum precision and hence
minimum standard error of contrast estimates (var(c'))

 Var(c™b) = sqgrt(c2c™(X"™X)1c) (i.i.d)

* If we assume that noise variance (02) is unaffected by changes in
X, then our precision for given parameters is proportional to the
design efficiency: e(c,X) = {cT(XTX)1¢ }

= \We can influence e (a priori) by the spacing and sequencing of
epochs/events in our design matrix

= ¢ is specific for a given contrast!



Design efficiency: Trial spacing

e Design parametrised by: obabitte

R I

min

- p) Probability of event

at each SOA,,, _ -
* Deterministic ﬂ“l““
p(t)=1 iff t=nSOAmin l‘u‘

e Stationary stochastic

p(t)=constant
Blocked designs most efficient! (with small SOAmiIn)

* Dynamic stochastic
p(t) varies (e.q., blocked)




Design efficiency: Trial spacing

However, block designs are often not
advisable due to interpretative
difficulties

Event trains may then be constructed
by modulating the event probabilities
in a dynamic stochastic fashion

This can result in intermediate levels
of efficiency

90.0

67.5

45.0

22.5

0.0

Block Dyn stoch Randomised
3 sessions with 128 scans
Faces, scrambled faces

SOA always 2.97 s
Cycle length 24 s



Design efficiency: Trial sequencing

* Design parametrised by:
SOA

pi(h)

min  Minimum SOA

Probability of event-type i given
history h of last m events

With n event-types p;(h) is a
n x n Transition Matrix

Example: Randomised AB

A B

A 0.5 0.5

B 0.5 0.5
=> ABBBABAABABAAA...

ogEuP,
.

4

.

Differential Effect (A-B)

Common Effect (A+B)

4
4
4
‘0
$
3
>
‘n
e £ 3

g v

1
20



Design efficiency: Trial sequencing

« Example: Null events

A B |

A 033 0.33 4o Ul Events (AB)

B 033 033 " ull Events (

=> AB-BAA--B---ABB... 1S / Null Events (A+B)

« Efficient for differential and
main effects at short SOA

« Equivalent to stochastic SOA
(Null Event like third . | |
unmodelled event-type) u ; 0 ® a 2 ®




Design efficiency: Trial sequencing

« Example: Alternating AB

A B +
A 0 1

B 1
Permuted (A-B)

; "y / Alternating (A-B)

=> ABABABABABAB... ¢
: i,
- Example: Permuted AB ’ ol Kok,
A B P iy A R
AA 0 1 T '

AB 0.5 0.5

BA 0.5 0.5 — : .
BB 1 0 o

=> ABBAABABABBA...




Design efficiency: Conclusions

Optimal design for one contrast may not be optimal for another

Blocked designs generally most efficient (with short SOAs, given optimal block
length is not exceeded)

However, psychological efficiency often dictates intermixed designs, and often
also sets limits on SOAs

With randomised designs, optimal SOA for differential effect (A-B) is minimal
SOA (>2 seconds, and assuming no saturation), whereas optimal SOA for main
effect (A+B) is 16-20s

Inclusion of null events improves efficiency for main effect at short SOAs (at
cost of efficiency for differential effects)

If order constrained, intermediate SOAs (5-20s) can be optimal

If SOA constrained, pseudorandomised designs can be optimal
(but may introduce context-sensitivity)
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1st Level

Contrast
images

contrast(s)

SPM(T, }"

2nd Level

one-sample t-test
at the second level




Tests with 1 image per subject

Tests with one contrast image per subject
« One-sample t-test
- Multiple regression
=> Straightforward, as only one source of variance in the data (between-subjects)



One-sample t-test

Is the mean of the data different from zero?

positive responses

pOSItIVG responses .
fitted
. - contrast(s) =) 1.3F plus error
o«
- S 12f
o0
o 11
2 =
pr—
© 4l
SPM{T @
11} w
k 8 0.9
X 3
8
ICATY
10
07 ! ! I | | |
2 : 0 2 4 6 8 10 12
0.5 1 1.5

Design matrix Scan number



Multiple regression

Do the data correspond to numerical predictions for each image?

age Fitted responses

age

. SPM{Tm}

acan narrber



Tests with multiple groups /images per subject

Tests with one contrast image per subject
« One-sample t-test
« Multiple regression

=> Straightforward, as only one source of variance in the data (between-subjects)

Tests with multiple images per subject, or multiple groups
« Two-sample and paired t-test
- n-way ANOVA (between and within)
- Full and flexible factorial

=> More complicated: Several sources of variance and/or correlated values
=> See talk on group analyses



Two-sample t-test

Do the means of two independent sets of data differ?
Example: Comparisons of patients and healthy controls
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parameters



Paired t-test

Do the means of two dependent sets of data differ?
Example: Pre-post designs with TMS or pharmacological interventions
Note: Can also be tested with a one-sample t-test of the difference

i ¥
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One-way ANOVA

Do the means of more than two independent sets of data differ?
Examples: Multi-group designs (three different age groups)

L badls nction,
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One-way ANOVA - within subjects

Do the means of more than two dependent sets of data differ?
Examples: Multi-intervention designs (baseline, intervention, baseline)
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Factorial ANOVAs

ANOVAS can have several factors reflecting different, interacting experimental effects
(e.g., 2x2 ANOVA)

SPM offers factorial designs that specify contrasts for main effects and interactions
These estimate either all (full factorial) or specified (flexible factorial) effects

Note that within-subject main effects and interactions can also be tested with
one-sample t-tests of the corresponding first-level contrasts

(this is the “cleanest” way, as only source of variance is between-subject)

But sometimes it may be necessary/helpful to estimate ANOVA effects at 2nd level
(e.g., mixed within/between designs, F-tests between any levels of factors)

Examples in the practical session on “group analyses”
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