
Journal of Mathematical Psychology 76 (2017) 198–211
Contents lists available at ScienceDirect

Journal of Mathematical Psychology

journal homepage: www.elsevier.com/locate/jmp

A tutorial on the free-energy framework for modelling perception
and learning
Rafal Bogacz ∗

MRC Unit for Brain Network Dynamics, University of Oxford, Mansfield Road, Oxford, OX1 3TH, UK
Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK

h i g h l i g h t s

• Bayesian inference about stimulus properties can be performed by networks of neurons.
• Learning about statistics of stimuli can be achieved by Hebbian synaptic plasticity.
• Structure of the model resembles the hierarchical organization of the neocortex.

a r t i c l e i n f o

Article history:
Available online 14 December 2015

a b s t r a c t

This paper provides an easy to follow tutorial on the free-energy framework for modelling perception
developed by Friston,which extends the predictive codingmodel of Rao andBallard. Thesemodels assume
that the sensory cortex infers the most likely values of attributes or features of sensory stimuli from
the noisy inputs encoding the stimuli. Remarkably, these models describe how this inference could be
implemented in a network of very simple computational elements, suggesting that this inference could be
performed by biological networks of neurons. Furthermore, learning about the parameters describing the
features and their uncertainty is implemented in thesemodels by simple rules of synaptic plasticity based
on Hebbian learning. This tutorial introduces the free-energy framework using very simple examples, and
provides step-by-step derivations of the model. It also discusses in more detail how the model could be
implemented in biological neural circuits. In particular, it presents an extended version of the model in
which the neurons only sum their inputs, and synaptic plasticity only depends on activity of pre-synaptic
and post-synaptic neurons.

© 2015 The Author. Published by Elsevier Inc.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
e

1. Introduction

The model of Friston (2005) and the predictive coding model
of Rao and Ballard (1999) provide a powerful mathematical frame-
work to describe how the sensory cortex extracts information from
noisy stimuli. The predictive coding model (Rao & Ballard, 1999)
suggests that visual cortex infers themost likely properties of stim-
uli from noisy sensory input. The inference in this model is im-
plemented by a surprisingly simple network of neuron-like nodes.
Themodel is called ‘‘predictive coding’’, because some of the nodes
in the network encode the differences between inputs and predic-
tions of the network. Remarkably, learning about features present
in sensory stimuli is implemented by simple Hebbian synaptic

∗ Correspondence to: Nuffield Department of Clinical Neurosciences, University
of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.

E-mail address: rafal.bogacz@ndcn.ox.ac.uk.

http://dx.doi.org/10.1016/j.jmp.2015.11.003
0022-2496/© 2015 The Author. Published by Elsevier Inc. This is an open access articl
plasticity, and Rao and Ballard (1999) demonstrated that themodel
presented with natural images learns features resembling recep-
tive fields of neurons in the primary visual cortex.

Friston (2005) has extended the model to also represent uncer-
tainty associated with different features. He showed that learn-
ing about the variance and co-variance of features can also be
implemented by simple synaptic plasticity rules based on Hebbian
learning. As the extendedmodel (Friston, 2005) learns the variance
and co-variance of features, it offers several new insights. First, it
describes how the perceptual systems may differentially weight
sources of sensory information depending on their level of noise.
Second, it shows how the sensory networks can learn to recog-
nize features that are encoded in the patterns of covariance be-
tween inputs, such as textures. Third, it provides a natural way to
implement attentional modulation as the reduction in variance of
the attended features (we come back to these insights in Discus-
sion). Furthermore, Friston (2005) pointed out that this model can
be viewed as an approximate Bayesian inference based on mini-
mization of a function referred to in statistics as free-energy. The

under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jmp.2015.11.003
http://www.elsevier.com/locate/jmp
http://www.elsevier.com/locate/jmp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmp.2015.11.003&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:rafal.bogacz@ndcn.ox.ac.uk
http://dx.doi.org/10.1016/j.jmp.2015.11.003
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

R. Bogacz / Journal of Mathematical Psychology 76 (2017) 198–211 199
free-energy framework (Friston, 2003, 2005) has been recently ex-
tended by Karl Friston and his colleagues to describe how the brain
performs different cognitive functions including action selection
(FitzGerald, Schwartenbeck, Moutoussis, Dolan, & Friston, 2015;
Friston et al., 2013). Furthermore, Friston (2010) proposed that the
free-energy theory unifies several theories of perception and ac-
tion which are closely related to the free-energy framework.

There are many articles which provide an intuition for the
free-energy framework and discuss how it relates with other
theories and experimental data (Friston, 2003, 2005, 2010; Friston
et al., 2013). However, the description of mathematical details
of the theory in these papers requires a very deep mathematical
background. The main goal of this paper is to provide an easy to
follow tutorial on the free-energy framework. Tomake the tutorial
accessible to a wide audience, it only assumes basic knowledge
of probability theory, calculus and linear algebra. This tutorial is
planned to be complementary to existing literature so it does not
focus on the relationship to other theories and experimental data,
and on applications to more complex tasks which are described
elsewhere (Friston, 2010; Friston et al., 2013).

In this tutorial we also consider in more detail the neural
implementation of the free-energy framework. Any computational
model would need to satisfy the following constraints to be
considered biologically plausible:

1. Local computation: A neuron performs computations only on
the basis of the activity of its input neurons and synaptic
weights associated with these inputs (rather than information
encoded in other parts of the circuit).

2. Local plasticity: Synaptic plasticity is only based on the activity
of pre-synaptic and post-synaptic neurons.

The model of Rao and Ballard (1999) fully satisfied these
constraints. The model of Friston (2005) did not satisfy them fully,
but we show that after small modifications and extensions it can
satisfy them. So the descriptions of the model in this tutorial
slightly differ in a few places or extend the original model to better
explain how the proposed computation could be implemented in
the neural circuits. All such differences or extensions are indicated
by footnotes or in text, and the original model is presented in
Appendix A.

It is commonly assumed in theoretical neuroscience, (O’Reilly &
Munakata, 2000) that the basic computations a neuron performs
are the summation of its input weighted by the strengths of
synaptic connections, and the transformation of this sum through
a (monotonic) function describing the relationship between
neurons’ total input and output (also termed firing-Input or f-I
curve). Whenever possible, we will assume that the computation
of the neurons in the described model is limited to these
computations (or even just to linear summation of inputs).

We feel that the neural implementation of the model is worth
considering, because if the free-energy principle indeed describes
the computations in the brain, it can provide an explanation for
why the cortex is organized in a particular way. However to
gain such insight it is necessary to start comparing the neural
networks implementing the model with those in the real brain.
Consequently, we consider in this paper possible neural circuits
that could perform the computations required by the theory.
Although the neural implementations proposed here are not the
only possible ones, it is worth considering them as a starting point
for comparison of the model with details of neural architectures in
the brain. We hope that such comparison could iteratively lead to
refined neural implementations that are more and more similar to
real neural circuits.

To make this tutorial as easy to follow as possible we introduce
the free-energy framework using a simple example, and then
illustrate how the model can scale up to more complex neural
architectures. The tutorial provides step-by-step derivation of the
model. Some of these derivations are straightforward, and we feel
that it would be helpful for the reader to do them on their own to
gain a better understanding of the model and to ‘‘keep in mind’’
the notation used in the paper. Such straightforward derivations
are indicated by ‘‘(TRY IT YOURSELF)’’, so after encountering such
label we recommend trying to do the calculation described in the
sentence with this label and then compare the obtained results
with those in the paper. To illustrate the model we include simple
simulations, but again we feel it would be helpful for a reader
to perform them on their own, to get an intuition for the model.
Therefore we describe these simulations as exercises.

The paper is organized as follows. Section 2 introduces the
model using a very simple example using as basic mathematical
concepts as possible, so it is accessible to a particularly wide audi-
ence. Section 3 provides mathematical foundations for the model,
and shows how the inference in the model is related to minimiza-
tion of free-energy. Section 4 then shows how the model scales up
to describe the neural circuits in sensory cortex. In these three sec-
tions we use notation similar to that used by Friston (2005). Sec-
tion 5 describes an extended version of the model which satisfies
the constraint of local plasticity described above. Finally, Section 6
discusses insights provided by the model.

2. Simplest example of perception

We start by considering in this section a simple perceptual
problem inwhich a value of a single variable has to be inferred from
a single observation. To make it more concrete, consider a simple
organism that tries to infer the size or diameter of a food item,
which we denote by v, on the basis of light intensity it observes.
Let us assume that our simple animal has only one light sensitive
receptor which provides it with a noisy estimate of light intensity,
which we denote by u. Let g denote a non-linear function relating
the average light intensity with the size. Since the amount of light
reflected is related to the area of an object, in this example we will
consider a simple function of g(v) = v2. Let us further assume
that the sensory input is noisy—in particular, when the size of food
item is v, the perceived light intensity is normally distributed with
mean g(v), and variance Σu (although a normal distribution is not
the best choice for a distribution of light intensity, as it includes
negative numbers, we will still use it for a simplicity):

p(u|v) = f (u; g(v), Σu). (1)

In Eq. (1) f (x; µ, Σ)denotes the density of a normal distribution
with mean µ and variance Σ:

f (x; µ, Σ) =
1

√
2πΣ

exp

−
(x − µ)2

2Σ

. (2)

Due to the noise present in the observed light intensity, the
animal can refine its guess for the size v by combining the sensory
stimulus with the prior knowledge on how large the food items
usually are, that it had learnt from experience. For simplicity, let us
assume that our animal expects this size to be normally distributed
with mean vp and variance Σp (subscript p stands for ‘‘prior’’),
which we can write as:

p(v) = f (v; vp, Σp). (3)

Let us now assume that our animal observed a particular value
of light intensity, and attempts to estimate the size of the food item
on the basis of this observation. We will first consider an exact
solution to this problem, and illustrate why it would be difficult
to compute it in a simple neural circuit. Then we will present an
approximate solution that can be easily implemented in a simple
network of neurons.

200 R. Bogacz / Journal of Mathematical Psychology 76 (2017) 198–211
Fig. 1. The posterior probability of the size of the food item in the problem given
in Exercise 1.

2.1. Exact solution

To compute how likely different sizes v are given the observed
sensory input u, we could use Bayes’ theorem:

p(v|u) =
p(v)p(u|v)

p(u)
. (4)

Term p(u) in the denominator of Eq. (4) is a normalization term,
which ensures that the posterior probabilities of all sizes p(v|u)
integrate to 1:

p(u) =

p(v)p(u|v)dv. (5)

The integral in the above equation sums over the whole range
of possible values of v, so it is a definite integral, but for brevity
of notation we do not state the limits of integration in this and all
other integrals in the paper.

Now combining Eqs. (1)–(5) we can compute numerically how
likely different sizes are given the sensory observation. For readers
who are not familiar with such Bayesian inference we recommend
doing the following exercise now.

Exercise 1. Assume that our animal observed the light intensity u =

2, the level of noise in its receptor is Σu = 1, and the mean and
variance of its prior expectation of size are vp = 3 and Σp = 1. Write
a computer program that computes the posterior probabilities of sizes
from 0.01 to 5, and plots them.

The Matlab code performing this calculation is given at the end
of the paper, and the resulting plot is shown in Fig. 1. It is worth
observing that such Bayesian approach integrates the information
brought by the stimuluswith prior knowledge: please note that the
most likely value of v lies between that suggested by the stimulus
(i.e.

√
2) and the most likely value based on prior knowledge (i.e.

3). It may seem surprising why the posterior probability is so low
for v = 3, i.e. the mean prior expectation. It comes from the fact
that g(3) = 9, which is really far from observed value u = 2, so
p(u = 2|v = 3) is very close to zero. This illustrates how non-
intuitive Bayesian inference can be once the relationship between
variables is non-linear.

Let us now discuss why performing such exact calculation is
challenging for a simple biological system. First, as soon as function
g relating the variable we wish to infer with observations is non-
linear, the posterior distribution p(v|u) may not take a standard
shape—for example the distribution in Fig. 1 is not normal.
Thus representing the distribution p(v|u) requires representing
infinitely many values p(v|u) for different possible u rather than
a few summary statistics like mean and variance. Second, the
computation of the posterior distribution involves computation
of the normalization term. Although it has been proposed that
circuits within the basal ganglia can compute the normalization
term in case of the discrete probability distributions (Bogacz &
Gurney, 2007), computation of the normalization for continuous
distributions involves evaluating the integral of Eq. (5). Calculating
such integral would be challenging for a simple biological system.
This is especially true when the dimensionality of the integrals
(i.e., the number of unknown variables) increases beyond a trivial
number. Even mathematicians resort to (computationally very
expensive) numerical or sampling techniques in this case.

We will now present an approximate solution to the above
inference problem, that could be easily implemented in a simple
biological system.

2.2. Finding the most likely feature value

Instead of finding the whole posterior distribution p(v|u), let us
try to find the most likely size of the food item v which maximizes
p(v|u). We will denote this most likely size by φ, and its posterior
probability density by p(φ|u). It is reasonable to assume that in
many cases the brain represents at a given moment of time only
most likely values of features. For example in case of binocular
rivalry, only one of the two possible interpretations of sensory
inputs is represented.

Wewill look for the valueφ whichmaximizes p(φ|u). According
to Eq. (4), the posterior probability p(φ|u) depends on a ratio of
two quantities, but the denominator p(u) does not depend on φ.
Thus the value ofφ whichmaximizes p(φ|u) is the same onewhich
maximizes the numerator of Eq. (4). We will denote the logarithm
of the numerator by F , as it is related to the negative of free energy
(as we will describe in Section 3):

F = ln p(φ) + ln p(u|φ). (6)

In the above equation we used the property of logarithm
ln(ab) = ln a+ln b. Wewill maximize the logarithmof the numer-
ator of Eq. (4), because it has the samemaximum as the numerator
itself as ln is a monotonic function, and is easier to compute as the
expressions for p(u|φ) and p(φ) involve exponentiation.

To find the parameterφ that describes themost likely size of the
food item, we will use a simple gradient ascent: i.e. we will modify
φ proportionally to the gradient of F , which will turn out to be a
very simple operation. It is relatively straightforward to compute
F by substituting Eqs. (1)–(3) into Eq. (6) and then to compute the
derivative of F (TRY IT YOURSELF).

F = ln f (φ; vp, Σp) + ln f (u; g(φ), Σu)

= ln

1

2πΣp
exp

−

(φ − vp)
2

2Σp

+ ln

1
√
2πΣu

exp

−
(u − g(φ))2

2Σu

= ln

1
√
2π

−
1
2
lnΣp −

(φ − vp)
2

2Σp

+ ln
1

√
2π

−
1
2
lnΣu −

(u − g(φ))2

2Σu

=
1
2

− lnΣp −

(φ − vp)
2

Σp
− lnΣu −

(u − g(φ))2

Σu

+ C . (7)

We incorporated the constant terms in the 2nd line above into
a constant C . Now we can compute the derivative of F over φ:

∂F
∂φ

=
vp − φ

Σp
+

u − g(φ)

Σu
g ′(φ). (8)

R. Bogacz / Journal of Mathematical Psychology 76 (2017) 198–211 201
Fig. 2. Solutions to Exercises 2 and 3. In panel b we have also included quantities that we will see later can be regarded as prediction errors.
In the above equation we used the chain rule to compute the
second term, and g ′(φ) is a derivative of function g evaluated at φ,
so in our example g ′(φ) = 2φ. We can find our best guess φ for v
simply by changing φ in proportion to the gradient:

φ̇ =
∂F
∂φ

. (9)

In the above equation φ̇ is the rate of change of φ with time. Let
us note that the update of φ is very intuitive. It is driven by two
terms in Eq. (8): the first moves it towards the mean of the prior,
the second moves it according to the sensory stimulus, and both
terms are weighted by the reliabilities of prior and sensory input
respectively.

Now please note that the above procedure for finding the ap-
proximate distribution of distance to food item is computationally
much simpler than the exact method presented at the start of the
paper. To gain more appreciation for the simplicity of this compu-
tation we recommend doing the following exercise.

Exercise 2. Write a computer program finding the most likely size
of the food item φ for the situation described in Exercise 1. Initialize
φ = vp, and then find its values in the next 5 time units (you can
use Euler’s method, i.e. update φ(t + 1t) = φ(t) + 1t∂F/∂φ with
1t = 0.01).

Fig. 2(a) shows a solution to Exercise 2. Please notice that it
rapidly converges to the value of φ ≈ 1.6, which is also the value
that maximizes the exact posterior probability p(v|u) shown in
Fig. 1.

2.3. A possible neural implementation

One can envisage many possible ways in which the computa-
tion described in previous subsection could be implemented in
neural circuits. In this paper we will present a possible imple-
mentationwhich satisfies the constraints of local computation and
plasticity described in the Introduction. It slightly differs from the
original implementation which is contained in Appendix A.

While thinking about the neural implementation of the above
computation, it is helpful to note that there are two similar terms
in Eq. (8), so let us denote them by new variables.

εp =
φ − vp

Σp
(10)

εu =
u − g(φ)

Σu
. (11)
The above terms are the prediction errors1: εu expresses how
much the light intensity differs from that expected if the size of
the food itemwas φ, while εp denotes how the inferred size differs
from prior expectations.With these new variables the equation for
updating φ simplifies to:

φ̇ = εug ′(φ) − εp. (12)

The neural implementation of the model assumes that the
model parameters vp, Σp, and Σu are encoded in the strengths of
synaptic connections (as they need to be maintained over the ani-
mal’s lifetime), while variables φ, εu, and εp and the sensory input
u aremaintained in the activity of neurons or neuronal populations
(as they change rapidlywhen the sensory input ismodified). In par-
ticular, we will consider very simple neural ‘‘nodes’’ which simply
change their activity proportionally to the input they receive, so for
example, Eq. (12) is implemented in themodel by a node receiving
input equal to the right hand side of this equation. The prediction
errors could be computed by the nodes with the following dynam-
ics2:

ε̇p = φ − vp − Σpεp (13)

ε̇u = u − g(φ) − Σuεu. (14)

It is easy to show that the nodes with dynamics described by
Eqs. (13)–(14) converge to the values defined in Eqs. (10)–(11).
Once Eqs. (13)–(14) converge, then ε̇ = 0, so setting ε̇ = 0 and
solving Eqs. (13)–(14) for ε, one obtains Eqs. (10)–(11).

The architecture of the network described by Eqs. (12)–(14) is
shown in Fig. 3. Let us consider the computations in its nodes. The
node εp receives excitatory input from node φ, inhibitory input
from a tonically active neuron via a connection with strength vp,
and inhibitory input from itself via a connection with strength
Σp, so it implements Eq. (13). The nodes φ and εu analogously
implement Eqs. (12) and (14), but here the information exchange
between them is additionally affected by function g , and we will
discuss this issue in more detail in Section 2.5. We have now
described all the details necessary to simulate the model.

Exercise 3. Simulate the model from Fig. 3 for the problem
from Exercise 1. In particular, initialize φ = vp, εp = εu = 0, and
find their values for the next 5 units of time.

1 In the original model (Friston, 2005) the prediction errors were normalized
slightly differently as explained in Appendix A.
2 The original model does not provide details on the dynamics of the nodes

computing prediction error, but we consider sample description of their dynamics
to illustrate how these nodes can perform their computation.

202 R. Bogacz / Journal of Mathematical Psychology 76 (2017) 198–211
Fig. 3. The architecture of the model performing simple perceptual inference.
Circles denote neural ‘‘nodes’’, arrows denote excitatory connections, while lines
ended with circles denote inhibitory connections. Labels above the connections
encode their strength, and lack of label indicates the strength of 1. Rectangles
indicate the values that need to be transmitted via the connections they label.

Solution to Exercise 3 is shown in Fig. 2(b). Themodel converges
to the same value as in Fig. 2(a), but the convergence is just slower,
as themodel now includesmultiple nodes connected by excitatory
and inhibitory connections and such networks have oscillatory
tendencies, so these oscillations need to settle for the network to
converge.

2.4. Learning model parameters

As our imaginary animal perceives food items through its
lifetime, it may wish to refine its expectation about typical sizes
of food items described by parameters vp and Σp, and about the
amount of error it makes observing light intensity, described by
parameter Σu. Thus it may wish to update the parameters vp, Σp,
and Σu after each stimulus to gradually refine them.

We wish to choose the model parameters for which the
perceived light intensities u are least surprising, or in other words
most expected. Thus wewish to choose parameters that maximize
p(u). However, please recall that p(u) is described by a complicated
integral of Eq. (5), so it would be difficult tomaximize p(u) directly.
Nevertheless, it is simple to maximize a related quantity p(u, φ),
which is the joint probability of sensory input u and our inferred
food size φ. Note that p(u, φ) = p(φ)p(u|φ), so F = ln p(u, φ),
thus maximization of p(u, φ) can be achieved by maximizing F . A
more formal explanation for why the parameters can be optimized
by maximizing F will be provided in Section 3.

The model parameters can be hence optimized by modifying
them proportionally to the gradient of F . Starting with the
expression in Eq. (7) it is straightforward to find the derivatives
of F over vp, Σp and Σu (TRY IT YOURSELF):

∂F
∂vp

=
φ − vp

Σp
(15)

∂F
∂Σp

=
1
2

(φ − vp)

2

Σ2
p

−
1

Σp

(16)

∂F
∂Σu

=
1
2

(u − g(φ))2

Σ2
u

−
1

Σu

. (17)

Let us now provide an intuition for why the parameter update
rules have their particular form. We note that since parameters
are updated after observing each food item, and different food
items observed during animal’s life time have different sizes, the
parameters never converge. Nevertheless it is useful to consider
the values of parameters for which the expected value of change
is 0, as these are the values in vicinity of which the parameters are
likely to be. For example, according to Eq. (15), the expected value
of change in vp is 0 when ⟨(φ − vp)/Σp⟩ = 0, where ⟨⟩ denotes
the expected value over trials. This will happen if vp = ⟨φ⟩, i.e.
when vp is indeed equal to the expected value of φ. Analogously,
the expected value of change in Σp is 0 when:

(φ − vp)
2

Σ2
p

−
1

Σp

= 0. (18)

Rearranging the above condition one obtainsΣp = ⟨(φ −vp)
2
⟩,

thus the expected value of change in Σp is 0, when Σp is equal to
the variance of φ. An analogous analysis can be made for Σu.

Eqs. (15)–(17) for update of model parameters simplify
significantly when they are written in terms of prediction errors
(TRY IT YOURSELF):

∂F
∂vp

= εp (19)

∂F
∂Σp

=
1
2

ε2
p − Σ−1

p

(20)

∂F
∂Σu

=
1
2

ε2
u − Σ−1

u

. (21)

The above rules for update of parameters correspond to very
simple synaptic plasticity mechanisms. All rules include only
values that can be ‘‘known’’ by the synapse, i.e. the activities of
pre-synaptic and post-synaptic neurons, and the strengths of the
synapse itself. Furthermore, the rules areHebbian, in the sense that
they depend on the products of activity of pre-synaptic and post-
synaptic neurons. For example, the change in vp in Eq. (19) is equal
to the product of pre-synaptic activity (i.e. 1) and the post-synaptic
activity εp. Similarly, the changes in Σ in Eqs. (20)–(21) depend
on the products of pre-synaptic and post-synaptic activities, both
equal to ε.

The plasticity rules of Eqs. (20)–(21) also depend on the value
of synaptic weights themselves, as they include termsΣ−1. For the
simple case considered in this section, the synapse ‘‘has access’’
to the information on its weight. Moreover, the dependence of
synaptic plasticity on initial weights has been seen experimentally
(Chen et al., 2013), so we feel it is plausible for the dependence
predicted by the model to be present in real synapses. However,
when the model is scaled up to include multiple features and
sensory inputs in Section 4.1, terms Σ−1 will turn into a matrix
inverse (in Eqs. (48)–(49)), so the required changes in each weight
will depend on the weights of other synapses in the network.
Nevertheless, we will show in Section 5 how this problem can be
overcome.

Finally, we would like to discuss the limits on parameters Σ .
Although in principle the variance of a random variable can be
equal to 0, if Σp = 0 or Σu = 0, then Eq. (13) or (14) would not
converge but instead εp or εu would diverge to positive or negative
infinity. Similarly, if Σ were close to 0, the convergence would be
very slow. To prevent this from happening, the minimum value of
1 is imposed by Friston (2005) on the estimated variance.3

2.5. Learning the relationship between variables

So far we have assumed for simplicity that the relationship g
between the variable being inferred and the stimulus is known.
However, in general it may not be known, ormay need to be tuned.

3 In the original model, variables λ =
√

Σ − 1 were defined, and these variables
were encoded in the synaptic connections. Formally, this constraint is known
as a hyperprior. This is because the variance or precision parameters are often
referred to mathematically as hyperparameters. Whenever we place constraints on
hyperparameters we necessarily invoke hyperpriors.

R. Bogacz / Journal of Mathematical Psychology 76 (2017) 198–211 203
Fig. 4. Architectures of models with linear and nonlinear function g . Circles and hexagons denote linear and nonlinear nodes respectively. Filled arrows and lines ended
with circles denote excitatory and inhibitory connections respectively, and an open arrow denotes a modulatory influence.
So we will now consider function g(v, θ) that also depends on
parameter which we denote by θ .

We will consider two special cases of function g(v, θ), where
the parameter θ has a clear biological interpretation. First, let us
consider a simple case of a linear function: g(v, θ) = θv, as then
the model has a straightforward neural implementation. In this
case, Eqs. (12)–(14) describing the model simplify to:

φ̇ = θεu − εp (22)

ε̇p = φ − vp − Σpεp (23)

ε̇u = u − θφ − Σuεu (24)

In this model, nodes φ and ε simply communicate through
connections with weight θ as shown in Fig. 4(a). Furthermore, we
can also derive the rule for updating the parameter θ by finding the
gradient of F over θ , as now function g in Eq. (7) depends on θ (TRY
IT YOURSELF):

∂F
∂θ

= εuφ. (25)

Please note that this rule is again Hebbian, as the synaptic
weights encoding θ are modified proportionally to the activities
of pre-synaptic and post-synaptic neurons (see Fig. 4(a)).

Second, let us consider a case of a nonlinear function4 g(v, θ) =

θh(v), where h(v) is a nonlinear function that just depends on v,
as it results in only slightly more complex neural implementation.
Furthermore, this situation is relevant to the example of the simple
animal considered at the start of this section, as the light is
proportional to the area, but the proportionality constant may not
be known (this case is also relevant to the network that we will
discuss in Section 4.1). In this case, Eqs. (12)–(14) describing the
model become:

φ̇ = θεuh′(φ) − εp (26)

ε̇p = φ − vp − Σpεp (27)

ε̇u = u − θh(φ) − Σuεu. (28)

A possible network implementing this model is illustrated in
Fig. 4(b), which now includes non-linear elements. In particular,
the node φ sends to node εu its activity transformed by a non-
linear function, i.e. θh(φ). One could imagine that this could be
implemented by an additional node receiving input from node φ,
transforming it via a non-linear transformation h and sending its
output to node εu via a connection with the weight θ . Analogously,
the input from node εu to node φ needs to be scaled by θh′(φ).
Again one could imagine that this could be implemented by an
additional node receiving input from node φ, transforming it via a

4 Although this case has not been discussed by Friston (2005), it was discussed
by Rao and Ballard (1999).
non-linear transformation h′ and modulating input received from
node εu via a connection with weight θ (alternatively, this could
be implemented within the node φ by making it react to its input
differentially depending on its level of activity). The details of
the neural implementation of these non-linear transformations
depend on the form of function h, and would be an interesting
direction of the future work.

We also note that the update of the parameter θ , i.e. gradient of
F over θ becomes:

∂F
∂θ

= εuh(φ). (29)

This rule is Hebbian for the top connection labelled by θ in
Fig. 4(b), as it is a product of activity of the pre-synaptic and post-
synaptic nodes. It would be interesting to investigate how such
a plasticity rule could be realized for the other connection with
the weight of θ (from node εu to φ). We just note that for this
connection the rule also satisfies the constraint of local plasticity
(stated in the Introduction), as φ fully determines h(φ), so the
change inweight is fully determined by the activity of pre-synaptic
and post-synaptic neurons.

3. Free-energy

In this section we discuss how the computations in the
model relate to a technique of statistical inference involving
minimization of free-energy. There are three reasons for describing
this relationship. First, it will provide more insight for why the
parameters can be optimized by maximization of F . Second,
the concept of free-energy is critical for understanding of more
complex models (Friston et al., 2013), which not only estimate
the most likely values of variables, but their distribution. Third,
the free-energy is a very interesting concept on its own, and has
applications inmathematical psychology (Ostwald, Kirilina, Starke,
& Blankenburg, 2014).

We now come back to the example of an inference by a
simple organism, and discuss how the exact inference described
in Section 2.1 can be approximated. As we noted in Section 2.1,
the posterior distribution p(v|u)may have a complicated shape, so
wewill approximate it with another distribution, whichwe denote
q(v). Importantly, we will assume that q(v) has a standard shape,
so we will be able to characterize it by parameters of this typical
distribution. For example, if we assume that q(v) is normal, then
to fully describe it, we can infer just two numbers: its mean and
variance, instead of infinitely many numbers potentially required
to characterize a distribution of an arbitrary shape.

For simplicity, here we will use an even simpler shape of the
approximate distribution, namely the delta distribution, which has
all its mass cumulated in one point which we denote by φ (i.e. the
delta distribution is equal to 0 for all values different from φ, but
its integral is equal to 1). Thus wewill try to infer from observation

204 R. Bogacz / Journal of Mathematical Psychology 76 (2017) 198–211
just one parameter φ which will characterize the most likely value
of v.

We now describe what criterion we wish our approximate
distribution to satisfy. We will seek the approximate distribution
q(v) which is as close as possible to the actual posterior
distribution p(v|u). Mathematically, the dissimilarity between
two distributions in measured by the Kullback–Leibler divergence
defined as:

KL (q(v), p(v|u)) =

q(v) ln

q(v)

p(v|u)
dv. (30)

For readers not familiar with Kullback–Leibler divergence we
would like clarify why it is a measure of dissimilarity between the
distributions. Please note that if the two distributions q(v) and
p(v|u) were identical, the ratio q(v)/p(v|u) would be equal to 1,
so its logarithm would be equal to 0, and so the whole expression
in Eq. (30) would be 0. The Kullback–Leibler divergence also has
a property that the more different the two distributions are, the
higher its value is (see Ostwald et al. (2014) for more details).

Since we assumed above that our simplified distribution is
a delta function, we will simply seek the value of its centre
parameter φ which minimizes the Kullback–Leibler divergence
defined in Eq. (30).

It may seem that the minimization of Eq. (30) is still difficult,
because to compute term p(v|u) present in Eq. (30) from Bayes’
theorem (Eq. (4)) one needs to compute the difficult normalization
integral (Eq. (5)). However, we will now show that there exists
anotherway of finding the approximate distribution q(v) that does
not involve the complicated computation of the normalization
integral.

Substituting the definition of conditional probability p(v|u) =

p(u, v)/p(u) into Eq. (30) we obtain:

KL (q(v), p(v|u)) =

q(v) ln

q(v)p(u)
p(u, v)

dv

=

q(v) ln

q(v)

p(u, v)
dv

+

q(v)dv ln p(u)

=

q(v) ln

q(v)

p(u, v)
dv + ln p(u). (31)

In the transition from the second to the third line we used
the fact that q(v) is a probability distribution so its integral is 1.
The integral in the last line of the above equation is called free-
energy, andwewill denote its negative by F , because wewill show
below, that for certain assumptions the negative free-energy is
equal (modulo a constant) to the function F we defined and used
in the previous section:

F =

q(v) ln

p(u, v)

q(v)
dv. (32)

In the above equation we used the property of logarithms that
− ln a/b = ln b/a. So, the negative free-energy is related to the
Kullback–Leibler divergence in the following way:

KL (q(v), p(v|u)) = −F + ln p(u). (33)

Now please note that ln p(u) does not depend on φ (which is
a parameter describing q(v)), so the value of φ that minimizes
the distance between q(v) and p(v|u) is the same value as
that which maximizes F . Therefore instead of minimizing the
Kullback–Leibler divergencewe canmaximize F , and this will have
two benefits: first, as we already mentioned above, F is easier to
compute as it does not involve the complicated computation of the
normalization term. Second, as we will see later, it will allow us to
naturally introduce learning about the parameters of the model.

Let us first note that by assuming that q(v) is a delta distribu-
tion, the negative free energy simplifies to:

F =

q(v) ln

p(u, v)

q(v)
dv

=

q(v) ln p(u, v)dv −

q(v) ln q(v)dv

= ln p(u, φ) + C1. (34)

In the transition from the first to the second line above we used
the property of logarithms ln(a/b) = ln a − ln b. In the transition
from the second line to the third line we used the property of a
delta function δ(x) with centre φ that for any function h(x), the
integral of δ(x)h(x) is equal to h(φ). Furthermore, since the value
of the second integral in the second line of the above equation does
not depend on φ (so it will cancel whenwe compute the derivative
over φ) we denote it by a constant C1.

Now using p(u, φ) = p(φ)p(u|φ), and ignoring constant
C1, we obtain the expression for F we introduced previously in
Eq. (6). Thus finding approximate delta distribution q(v) through
minimization of free-energy is equivalent to the inference of
features in the model described in the previous section. It is worth
noting that Eq. (34) states that the best centre for our approximate
distribution (i.e. our best guess for the size of the food item) is the
value v = φ which maximizes the joint probability p(u, φ).

We now discuss how the concept of free-energy will help us
to understand why the parameters of the model can be learnt by
maximization of F . Recall from Section 2.4 that we wish to find
parameters forwhich the sensory observations are least surprising,
i.e. those which maximize p(u). To see the relationship between
maximizing p(u) and maximizing F , we note that according to
Eq. (33), p(u) is related to the negative free-energy in the following
way:

ln p(u) = F + KL (q(v), p(v|u)) . (35)

Since Kullback–Leibler divergence is non-negative, F is a lower
bound on ln p(u), thus by maximizing F we maximize the lower
bound on ln p(u). So in summary, by maximizing F we can both
find an approximate distribution q(v) (as discussed earlier), and
optimize model parameters. However, there is a twist here: we
wish to maximize the average of p(u) across trials (or here
observations of different food items). Thus on each trial we need
to modify the model parameters just a little bit (rather than until
minimum of free energy is reached as was the case for φ).

4. Scaling up the model of perception

In this section we will show how the model scales up to the
networks inferring multiple features and involving hierarchy.

4.1. Increasing the dimension of sensory input

The model naturally scales up to the case of multiple sensory
inputs from which we estimate multiple variables. Such scaled
model could be used to describe information processing within
a cortical area (e.g. primary visual cortex) which infers multiple
features (e.g. edges at different position and orientation) on the
basis of multiple inputs (e.g. information from multiple retinal
receptors preprocessed by the thalamus). This section shows that
when the dimensionality of inputs and features is increased, the
dynamics of nodes in the networks and synaptic plasticity are
described by the same rules as in Section 2, just generalized to
multiple dimensions.

R. Bogacz / Journal of Mathematical Psychology 76 (2017) 198–211 205
Table 1
Rules for computation of derivatives. A denotes a symmetric matrix.

Original rule Generalization to matrices

∂ax2
∂x = 2ax ∂xT Ax

∂x = 2Ax

if z = f (y), y = g(x), then ∂z
∂x =

∂y
∂x

∂z
∂y if z = f (y), y = g(x), then ∂z

∂x =

∂y
∂x

T
∂z
∂y

∂ ln a
∂a =

1
a

∂ ln |A|

∂A = A−1

∂ x2
a

∂a = −
x2

a2
∂xT A−1x

∂A = −(A−1x)(A−1x)T
The only complication in explaining this case lies in the
necessity to use matrix notation, so let us make this notation very
explicit: we will denote single numbers in italic (e.g. x), column
vectors by bar (e.g. x), and matrices in bold (e.g. x). So we assume
the animal has observed sensory input u and estimates the most
likely values φ of variables v. We further assume that the animal
has prior expectation that the variables v come from multivariate
normal distribution with mean vp and covariance matrix 6p, i.e.
p(v) = f (v; vp, 6p) where:

f (x; µ, 6) =
1

(2π)N |6|
exp

−

1
2
(x − µ)T6−1(x − µ)

. (36)

In the above equation N denotes the length of vector x, and |6|

denotes the determinant of matrix 6. Analogously, the probability
of observing sensory input given the values of variables is given by
p(u|v) = f (u; g(v, 2), 6u), where 2 are parameters of function
g . We denote these parameters by a matrix 2, as we will consider
a generalization of the function g discussed in Section 2.5, i.e.
g(v, 2) = 2h(v), where each element i of vector h(v) depends
only on vi. This function corresponds to an assumption oftenmade
bymodels of feature extraction (Bell & Sejnowski, 1995; Olshausen
& Field, 1995), that stimuli are formed by a linear combination of
features.5 Moreover, such a function g can be easily computed as it
is equal to an input to a layer of neurons from another layer with
activity h(v) via connections with strength 2.

We can state the negative free energy, analogously as for the
simple model considered in Eq. (7) (TRY IT YOURSELF):

F = ln p(φ) + ln p(u|φ)

=
1
2
(− ln |6p| − (φ − vp)

T6−1
p (φ − vp)

− ln |6u| − (u − g(φ, 2))T6−1
u (u − g(φ, 2))) + C . (37)

Analogously as before, to find the vector of most likely values
of features φ, we will calculate the gradient (vector of derivatives
∂F/∂φi) which we will denote by ∂F/∂φ. We will use the elegant
property that rules for computation of derivatives generalize to
vectors and matrices. To get an intuition for these rules we
recommend the following exercise that shows how the rule
∂x2/∂x = 2x generalizes to vectors.

Exercise 4. Show that for any vector x the gradient of function y =

xT x is equal to: ∂y/∂x = 2x.

Using an analogous method as that in the solution to Exercise
4 (at the end of the paper) one can see that several other rules
generalize as summarized in Table 1. These rules can be applied for
symmetric matrices, but since 6 are covariance matrices, they are

5 In the model of Rao and Ballard (1999) the sparse coding was achieved through
introduction of additional prior expectation that most φi are close to 0, but the
sparse coding can also be achieved by choosing a shape of function h such that h(vi)

aremostly close to 0, but only occasionally significantly different from zero (Friston,
2008).
symmetric, so we can use the top two rules in Table 1 to compute
the gradient of the negative free energy (TRY IT YOURSELF):

∂F

∂φ
= −6−1

p (φ − vp) +
∂g(φ, 2)

T

∂φ
6−1

u (u − g(φ, 2)). (38)

In the above equation, terms appear which are generalizations
of the prediction errors we defined for the simple models:

εp = 6−1
p (φ − vp) (39)

εu = 6−1
u (u − g(φ, 2)). (40)

With the error terms defined, the equation describing the
update of φ becomes:

˙φ = −εp +
∂g(φ, 2)

T

∂φ
εu. (41)

The partial derivative term in the above equation is a matrix
that contains in each entry with co-ordinates (i, j) the derivative of
element i of vector g(φ, 2) over φj. To see how the above equation
simplifies for our choice of function g , it is helpful without loss of
generality to consider a case of 2 features being estimated from 2
stimuli. Then:

g(φ, 2) = 2h(φ) =

θ1,1h(φ1) + θ1,2h(φ2)
θ2,1h(φ1) + θ2,2h(φ2)

. (42)

Hence we can find the derivatives of elements of the above
vector over the elements of vector φ:

∂g(φ, 2)

∂φ
=

θ1,1h′(φ1) θ1,2h′(φ2)
θ2,1h′(φ1) θ2,2h′(φ2)

. (43)

Now we can see that Eq. (41) can be written as:

˙φ = −εp + h′(φ) × 2Tεu. (44)

In the above equation × denotes element by element multipli-
cation, so term h′(φ)×2Tεu is a vector where its element i is equal
to a product of h′(φi) and element i of vector 2Tεu. Analogously,
as for the simple model, prediction errors could be computed by
nodes with the following dynamics:

ε̇p = φ − vp − 6pεp (45)

ε̇u = u − 2h(φ) − 6uεu. (46)

It is easy to see that Eqs. (45)–(46) have fixed points at
values given by Eqs. (39)–(40) by setting the left hand sides of
Eqs. (45)–(46) to 0. The architecture of the network with the
dynamics described by Eqs. (44)–(46) is shown in Fig. 5, and it is
analogous to that in Fig. 4(b).

Analogously as for the simple model, one can also find the rules
for updating parameters encoded in synaptic connections, which
generalize the rules presented previously. In particular, using the
top formula in Table 1 it is easy to see that:

∂F
∂vp

= εp. (47)

206 R. Bogacz / Journal of Mathematical Psychology 76 (2017) 198–211
Fig. 5. The architecture of the model inferring 2 features from 2 sensory stimuli.
Notation as in Fig. 4(b). To help identify which connections are intrinsic and
extrinsic to each level of hierarchy, the nodes and their projections in each level of
hierarchy are shown in green, blue and purple respectively (in the online version).
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Using the two bottom formulas in Table 1 one can find the rules
for update of covariance matrices (TRY IT YOURSELF):

∂F
∂6p

=
1
2

εpε

T
p − 6−1

p

(48)

∂F
∂6u

=
1
2

εuε

T
u − 6−1

u

. (49)

The derivation of update of parameters 2 is a bit more tedious,
but we show in Appendix B that:

∂F
∂2

= εuh(φ)T . (50)

The above plasticity rules of Eqs. (47)–(50) are Hebbian in the
same sense they were for the simple model—for example Eq. (48)
implies that Σp,i,j should be updated proportionally to εp,iεp,j,
i.e. to the product of activity of pre-synaptic and post-synaptic
neurons. However, the rules of update of covariance matrices of
Eqs. (48)–(49) containmatrix inverses6−1. The value of each entry
in matrix inverse depends on all matrix elements, so it is difficult
how it can be ‘‘known’’ by a synapse that encodes just a single
element. Nevertheless, we will show in Section 5 how the model
can be extended to satisfy the constraint of local plasticity.

4.2. Introducing hierarchy

Sensory cortical areas are organized hierarchically, such that
areas in lower levels of hierarchy (e.g. primary visual cortex) infer
presence of simple features of stimuli (e.g. edges), on the basis
of which the sensory areas in higher levels of hierarchy infer
presence of more and more complex features. It is straightforward
to generalize the model from 2 layers to multiple layers. In such
generalized model the rules describing dynamics of neurons and
plasticity of synapses remain exactly the same, and only notation
has to be modified to describe presence of multiple layers of
hierarchy.

We assume that the expected value of activity in one layer vi
depends on the activity in the next layer vi+1:

E(u) = g1(v2, 21) (51)
E(v2) = g2(v3, 22)

E(v3) =

To simplify the notation we could denote u by v1, and then the
likelihood of activity in layer i becomes:

p(vi|vi+1) = f (vi; gi(vi+1, 2i), 6i). (52)

In this model, 6i parametrize the covariance between features
in each level, and 2i parametrize how the mean value of features
in one level depends on the next. Let us assume the same form of
function g as before, i.e. gi(vi+1, 2i) = 2ih(vi+1). By analogy to
the model described in the previous subsection, one can see that
inference of the features in all layers on the basis of sensory input
can be achieved in the network shown in Fig. 6(a). In this network
the dynamics of the nodes are described by:

˙φi = −εi + h′(φi). ∗ 2i−1
Tεi−1 (53)

ε̇i = φi − 2ih(φi+1) − 6iεi. (54)

Furthermore, by analogy to the previous section, the rules for
modifying synaptic connections in the model become:

∂F
∂6i

=
1
2

εiε

T
i − 6−1

i

(55)

∂F
∂2i

= εih(φi+1)
T . (56)

The hierarchical structure of the model in Fig. 6(a) parallels
the hierarchical structure of the cortex. Furthermore, it is worth
noting that different layers within the cortex communicate with
higher and lower sensory areas (as illustrated schematically in
Fig. 6(b)), which parallel the fact that different nodes in the model
communicate with other levels of hierarchy (Fig. 6(a)).

5. Local plasticity

The plasticity rules for synapses encoding matrix 6 (describing
the variance and co-variance of features or sensory inputs)
introduced in the previous section (Eqs. (48), (49) and (55))
include terms equal to the matrix inverse 6−1. Computing each
Fig. 6. (a) The architecture of themodel includingmultiple layers. For simplicity only the first two layers are shown. Notation as in Fig. 5. (b) Extrinsic connectivity of cortical
layers.

R. Bogacz / Journal of Mathematical Psychology 76 (2017) 198–211 207
Fig. 7. Prediction error networks that can learn the uncertainty parameter with
local plasticity. Notation as in Fig. 4(b). (a) Single node. (b) Multiple nodes for
multidimensional features.

element of the inverse 6−1 requires not only the knowledge of
the corresponding element of 6, but also of other elements. For
example, in a case of 2-dimensional vector u, the update rule for
the synaptic connection encoding Σu,1,1 (Eq. (49)) requires the
computation ofΣ−1

u,1,1 = Σu,2,2/|6u|. Hence the change of synaptic
weight Σu,1,1 depends on the value of the weight Σu,2,2, but
these are the weights of connections between different neurons
(see Fig. 5), thus the update rule violates the principle of the
local plasticity stated in the Introduction. Nevertheless, in this
section we show that by slightly modifying the architecture of
the network computing prediction errors, the need for computing
matrix inverses in the plasticity rules disappears. In other words,
we present an extension of the model from the previous section in
which learning the values of parameters Σ satisfies the constraint
of local plasticity. To make the description as easy to follow as
possible, we start with considering the case of single sensory input
and single feature on each level, and then generalize it to increased
dimension of inputs and features.

5.1. Learning variance of a single prediction error node

Instead of considering the whole model we now focus on
computations in a single node computing prediction error. In the
model we wish the prediction error on each level to converge to:

εi =
φi − gi(φi+1)

Σi
. (57)

In the above equation Σi is the variance of feature φi (around
the mean predicted by the level above):

Σi = ⟨(φi − gi(φi+1))
2
⟩. (58)

A sample architecture of the model that can achieve this
computation with local plasticity is shown in Fig. 7(a). It includes
an additional inhibitory inter-neuron ei which is connected to the
prediction error node, and receives input from it via the connection
with weight encoding Σi. The dynamics of this model is described
by the following set of equations:

ε̇i = φi − gi(φi+1) − ei (59)

ėi = Σiεi − ei. (60)

The levels of activity at the fixed point can be found by setting
the left hand sides of Eqs. (59)–(60) to 0 and solving the resulting
set of simultaneous equations (TRY IT YOURSELF):

εi =
φi − gi(φi+1)

Σi
(61)

ei = φi − gi(φi+1). (62)
Fig. 8. Changes in estimated variance during learning in Exercise 5.

Thus we see that the prediction error node has a fixed point at
the desired value (cf. Eq. (57)). Let us now consider the following
rule for plasticity of the connection encoding Σi:

1Σi = α(εiei − 1). (63)

According to this rule the weight is modified proportionally to
the product of activities of pre-synaptic and post-synaptic neurons
decreased by a constant, with a learning rate α. To analyse to what
values this rule converges, we note that the expected change is
equal to 0 when:

⟨εiei − 1⟩ = 0. (64)

Substituting Eqs. (61)–(62) into the above equation and rear-
ranging terms we obtain:

⟨(φi − gi(φi+1))
2
⟩

Σi
= 1. (65)

Solving the above equation for Σi we obtain Eq. (58). Thus in
summary the network in Fig. 7(a) computes the prediction error
and learns the variance of the corresponding feature with a local
Hebbian plasticity rule. To gain more intuition for how this model
works we suggest the following exercise.

Exercise 5. Simulate learning of variance Σi over trials. For simplic-
ity, only simulate the network described by Eqs. (59)–(60), and as-
sume that variables φ are constant. On each trial generate input φi
from a normal distribution with mean 5 and variance 2, while set
gi(φi+1) = 5 (so that the upper level correctly predicts the mean of
φi). Simulate the network for 20 time units, and then update weight
Σi with learning rate α = 0.01. Simulate 1000 trials and plot howΣi
changes across trials.

The results of simulations are shown in Fig. 8, and they illustrate
that the synaptic weightΣi approaches the vicinity of the variance
of φi.

It is also worth adding that εi in the model described by
Eqs. (59)–(60) converges to the prediction error (Eq. (61)), when
one assumes that φ are constant or change on much slower time-
scale than εi and ei. This convergence takes place because the
fixed point of the model is stable, which can be shown using the
standard dynamical systems theory (Strogatz, 1994). In particular,
since Eqs. (59)–(60) only contain linear functions of variables εi and
ei, their solution has a form of exponential functions of time t , e.g.
εi(t) = c exp(λt) + ε∗

i , where c and λ are constants, and ε∗

i is the
value at the fixed point. The sign of λ determines the stability of
the fixed point: when λ < 0, the exponential term decreases with
time, and εi converges to the fixed point, while if λ > 0, the fixed
point is unstable. The values of λ are equal to the eigenvalues of

208 R. Bogacz / Journal of Mathematical Psychology 76 (2017) 198–211
the matrix in the equation below (Strogatz, 1994), which rewrites
Eqs. (59)–(60) in a vector form:

ε̇i
ėi

=

0 −1
Σi −1

εi
ei

+

φi − gi(φi+1)
0

. (66)

To show that the eigenvalues of the matrix in the above
equation are negative we use the property that sum of eigenvalues
is equal to the trace and the product to the determinant. The trace
and determinant of this matrix are −1 and Σi, respectively. Since
the sum of eigenvalues is negative and their product positive, both
eigenvalues are negative, so the system is stable.

5.2. Learning the covariance matrix

The model described in the previous subsection scales up to
larger dimension of features and sensory inputs. The architecture
of the scaled up network is shown in Fig. 7(b), and its dynamics is
described by the following equations:

ε̇i = φi − gi(φi+1) − ei (67)

ėi = 6iεi − ei. (68)

Analogously as before, we can find the fixed point by setting the
left hand side of the equation to 0:

εi = 6−1
i (φi − gi(φi+1)) (69)

ei = φi − gi(φi+1). (70)

Thus we can see that nodes ε have fixed points at the values
equal to the prediction errors.We can now consider a learning rule
analogous to that in the previous subsection:

16i = α(εieTi − 1). (71)

To find the values to vicinity of which the above rule may
converge, we can find the value of 6i for which the expected value
of the right hand side of the above equation is equal to 0:

⟨εieTi − 1⟩ = 0. (72)

Substituting Eqs. (69)–(70) into the above equation, and solving
for 6i we obtain (TRY IT YOURSELF):

6i = ⟨(φi − gi(φi+1))(φi − gi(φi+1))
T
⟩. (73)

We can see that the learning rule has a stochastic fixed point
at the values corresponding to the covariance matrix. In summary,
the nodes in network described in this section have fixed points at
prediction errors and can learn the covariance of the corresponding
features, thus the proposed networkmay substitute the prediction
error nodes in the model shown in Fig. 6, and the computation
will remain the same. But importantly in the proposed network the
covariance is learnt with local plasticity involving simple Hebbian
learning.

6. Discussion

In this paperwepresented themodel of perception and learning
in neural circuits based on the free-energy framework. This model
extends the predictive coding model (Rao & Ballard, 1999) in
that it represents and learns not only mean values of stimuli or
features, but also their variances, which gives the model several
new computational capabilities, as we now discuss.

First, the model can weight incoming sensory information by
their reliability. This property arises in the model, because the
prediction errors are normalized by dividing them by the variance
of noise. Thus the more noisy is a particular dimension of the
Fig. 9. An example of a texture.

stimulus, the smaller the corresponding prediction error, and thus
lower its influence on activity on other neurons in the network.

Second, the model can learn properties of features encoded in
covariance of sensory input. An example of such feature is texture,
which can be efficiently recognized on the basis of covariance,
irrespectively of translation (Harwood, Ojala, Pietikäinen, Kelman,
& Davis, 1995). To get an intuition for this property, let us consider
an example of checker-board texture (Fig. 9). Please note that
adjacent nodes have always opposite colour – corresponding to
negative covariance, while the diagonal nodes have the same
colour – corresponding to positive covariance.

Third, the attentional modulation can be easily implemented in
the model by changing the variance associated with the attended
features (Feldman & Friston, 2010). Thus for example, attending
to feature i at level j of the hierarchy can be implemented by
decreasing synaptic weight Σj,i,i, or inhibiting node ej,i in case of
themodel described in Section 5, whichwill result in a larger effect
of the node encoding this feature on the activity in the rest of the
network.

In this paper we included description of the modified or
extended version of the model with local computation and
plasticity to better illustrate how computation proposed by the
free-energy framework can be implemented in neural circuits.
However, it will be necessary in the future to numerically evaluate
the efficiency of learning in the proposed model and the free-
energy framework in general. Existingmodels of feature extraction
(Bell & Sejnowski, 1997; Bogacz, Brown, & Giraud-Carrier, 2001;
Olshausen & Field, 1995) and predictive coding (Rao & Ballard,
1999) have been shown to be able to find features efficiently and
reproduce the receptive fields of neurons in the primary visual
cortex when trained with natural images. It would be interesting
to explicitly test in simulations if the model based on the free-
energy framework can equally efficiently extract features from
natural stimuli and additionally learn the variance and covariance
of features.

We have also demonstrated that if the dynamics within the
nodes computing prediction errors takes place on a time-scale
much faster than in the whole network, these nodes converge
to stable fixed points. It is also worth noting that under the
assumption of separation of time scales, the nodes computing φ
also converge to a stable fixed point, because variables φ converge
to the values that maximize function F . It would be interesting
to investigate how to ensure that the model converges to desired
values (rather than engaging into oscillatory behaviour) also when
one considers a more realistic case of time-scales not being fully
separated.

R. Bogacz / Journal of Mathematical Psychology 76 (2017) 198–211 209
In summary, in this paper we presented the free-energy theory,
which offers a powerful framework for describing computations
performed by the brain during perception and learning. The appeal
of the similarity in the organization of networks suggested by
this theory and observed in the brain invites attempts to map
the currently relatively abstract models on details of cortical
micro-circuitry, i.e. to map different elements of the model on
different neural populationswithin the cortex. For example, Bastos
et al. (2012) compared a more recent version of the model
(Friston, 2008) with the details of the cortical organization. Such
comparisons of themodelswith biological circuits are likely to lead
to iterative refinement of the models.

Even if the free-energy framework does describe cortical
computation, the mapping between the variables in the model
and the elements of neural circuit may not be ‘‘clean’’ but rather
‘‘messy’’ i.e. each model variable or parameter may be represented
by multiple neurons or synapses. The particular implementation
of the framework in the cortical circuit may be influenced by other
constraints the evolutionary pressure optimizes such as robustness
to damage, energy efficiency, speed of processing, etc. In any case,
the comparison of predictions of theoretical framework like the
free-energy with experimental data offers hope for understanding
the cortical micro-circuits.

Acknowledgments

Thisworkwas supported byMedical Research Council grantMC
UU 12024/5. The author thanks Karl Frison, John-Stuart Brittain,
Daniela Massiceti, Linus Schumacher and Rui Costa for reading the
previous version of the manuscript and very useful suggestions,
and Chris Mathys, Peter Dayan and Diego Vidaurre for discussion.

Appendix A. The original neural implementation

In the original model (Friston, 2005), the prediction errors were
defined in a slightly different way:

ξp =
φ − vp

σp
(74)

ξu =
u − g(φ)

σu
. (75)

In the above equations, σp =

Σp, and σu =
√

Σu, i.e. σp and
σu denote the standard deviations of distributions p(v) and p(u|v)
respectively. With the prediction error terms defined in this way,
the negative free energy computed in Eq. (7) can be written as:

F = − ln σp −
1
2
ξ 2
p − ln σu −

1
2
ξ 2
u + C2. (76)

The dynamics of variable φ is proportional to the derivative of
the above equation over φ:

φ̇ =
ξug ′(φ)

σu
−

εp

σp
. (77)

Analogously as in Section 2.3, the prediction errors defined in
Eqs. (74)–(75) could be computed in the nodes with the following
dynamics:

ξ̇p = φ − vp − σpξp (78)

ξ̇u = u − g(φ) − σuξu. (79)

The architecture of the model described by Eqs. (77)–(79) is
shown in Fig. 10. It is similar to that in Fig. 3, but differs in the
information received by node φ (we will discuss this difference in
more detail at the end of this Appendix).
Fig. 10. The architectures of the original model performing simple perceptual
inference. Notation as in Fig. 3.

Analogously as before, we can find the rules describing synaptic
plasticity in themodel, by calculating the derivatives of F (Eq. (76))
over vp, σp and σu (TRY IT YOURSELF):

∂F
∂vp

= ξpσ
−1
p (80)

∂F
∂σp

=

ξ 2
p − 1

σ−1
p (81)

∂F
∂σu

=

ξ 2
u − 1

σ−1
u . (82)

The original model does not satisfy the constraint of local com-
putation stated in the Introduction, because the node computing φ
receives the input from prediction error nodes scaled by parame-
ters σ (see Fig. 10), but the parameters σ are not encoded in the
connections between node φ and the prediction error nodes, but
instead in the connections among the prediction error neurons.
Nevertheless, we have shown in Section 2.3 that by just changing
the way in which prediction errors are normalized the computa-
tion in the model becomes local.

Appendix B. Derivation of plasticity rule for connections be-
tween layers

This Appendix derives the rule for update of 2 given in
Eq. (50). In order to use the two top formulas in Table 1 we have
to reshape the matrix 2 into a vector. To avoid death by notation,
without loss of generality, let us consider the case of 2 dimensional
stimuli and features. So let us define the vector of parameters:
θ = [θ1,1, θ1,2, θ2,1, θ2,2]. Now, using two top formulas in Table 1
one can find that:

∂F

∂θ
=

∂g(φ, 2)
T

∂θ
εu. (83)

From Eq. (42) we find:

∂g(φ, 2)T

∂θ
=

h(φ1) h(φ2) 0 0
0 0 h(φ1) h(φ2)

. (84)

We can now evaluate the right hand side of Eq. (83):

∂g(φ, 2)
T

∂θ
εu =

h(φ1) 0
h(φ2) 0
0 h(φ1)
0 h(φ2)

εu,1εu,2

=

h(φ1)εu,1
h(φ2)εu,1
h(φ1)εu,2
h(φ2)εu,2

 . (85)

Reshaping the right hand side of the above equation into a
matrix, we can see how it can be decomposed into the product of
vectors in Eq. (50):
h(φ1)εu,1 h(φ2)εu,1
h(φ1)εu,2 h(φ2)εu,2

=

εu,1
εu,2

h(φ1) h(φ2)

. (86)

210 R. Bogacz / Journal of Mathematical Psychology 76 (2017) 198–211

Solutions to exercises

Exercise 1

function exercise1

v_p = 3; % mean of prior distribution of food size
sigma_p = 1; % standard deviation of prior = sqrt(1)
sigma_u = 1; % standard deviation of sensory noise = sqrt(1)

u = 2; % observed light intensity

MINV = 0.01; % minimum value of v for which posterior computed
DV = 0.01; % interval between values of v for which posterior found
MAXV = 5; % maximum value of v for which posterior computed
vrange = [MINV:DV:MAXV];

numerator = normpdf (vrange,v_p,sigma_p) .* normpdf (u,vrange.^2,sigma_u);
normalization = sum (numerator * DV);
p = numerator / normalization;

plot (vrange, p, ’k’);
xlabel (’v’);
ylabel (’p(v|u)’);

Exercise 2

function exercise2

v_p = 3; % mean of prior distribution of food size
Sigma_p = 1; % variance of prior distribution
Sigma_u = 1; % variance of sensory noise

u = 2; % observed light intensity

DT = 0.01; % integration step
MAXT = 5; % maximum time considered

phi(1) = v_p; % initializing the best guess of food size

for i = 2:MAXT/DT
phi(i) = phi(i-1) + DT * ((v_p - phi(i-1))/Sigma_p + ...

(u-phi(i-1)^2)/Sigma_u * (2*phi(i-1)));
end

plot ([DT:DT:MAXT], phi, ’k’);
xlabel (’Time’);
ylabel (’\phi’);
axis ([0 MAXT -2 3.5]);

Exercise 3

function exercise3

v_p = 3; % mean of prior distribution of food size
Sigma_p = 1; % variance of prior distribution
Sigma_u = 1; % variance of sensory noise

u = 2; % observed light intensity

DT = 0.01; % integration step
MAXT = 5; % maximum time considered

phi(1) = v_p; % initializing the best guess of food size
error_p(1) = 0; % initializing the prediction error of food size
error_u(1) = 0; % initializing the prediction error of sensory input

for i = 2:MAXT/DT
phi(i) = phi(i-1) + DT * (- error_p(i-1) + error_u(i-1) * (2*phi(i-1)));
error_p(i) = error_p(i-1) + DT * (phi(i-1) - v_p - Sigma_p * error_p(i-1));
error_u(i) = error_u(i-1) + DT * (u - phi(i-1)^2 - Sigma_u * error_u(i-1));

end

plot ([DT:DT:MAXT], phi, ’k’);
hold on

R. Bogacz / Journal of Mathematical Psychology 76 (2017) 198–211 211

plot ([DT:DT:MAXT], error_p, ’k--’);
plot ([DT:DT:MAXT], error_u, ’k:’);
xlabel (’Time’);
ylabel (’Activity ’);
legend (’\phi’, ’\epsilon_p ’, ’\epsilon_u ’);
axis ([0 MAXT -2 3.5]);

Exercise 4

It is easiest to consider a vector of two numbers (analogous can be shown for longer vectors):

x =

x1
x2

. (87)

Then y = xT x = x21 + x22, so the gradient is equal to:

∂y
∂x

=

∂y
∂x1
∂y
∂x2

 =

2x1
2x2

= 2x. (88)

Exercise 5

function exercise5

mean_phi = 5; % mean of input from the current level
Sigma_phi = 2; % variance of input from the current level
phi_above = 5; % input from the level above

DT = 0.01; % integration step
MAXT = 20; % maximum time considered
TRIALS = 1000; % number of simulated trials
LRATE = 0.01; % learning rate

Sigma(1) = 1; % initializing the value of weight

for trial = 2:TRIALS
error(1) = 0; % initializing the prediction error
e(1) = 0; % initializing the interneuron
phi = mean_phi + sqrt(Sigma_phi) * randn;

for i = 2:MAXT/DT
error(i) = error(i-1) + DT * (phi - phi_above - e(i-1));
e(i) = e(i-1) + DT * (Sigma(trial -1) * error(i-1) - e(i-1));

end

Sigma(trial) = Sigma(trial -1) + LRATE * (error(end)*e(end) - 1);
end

plot (Sigma, ’k’);
xlabel (’Trial ’);
ylabel (’\Sigma ’);

References

Bastos, AndreM., Usrey,W. Martin, Adams, RickA.,Mangun, George R., Fries, Pascal,
& Friston, Karl J. (2012). Canonical microcircuits for predictive coding. Neuron,
76, 695–711.

Bell, Anthony J., & Sejnowski, Terrence J. (1995). An information-maximization ap-
proach to blind separation and blind deconvolution. Neural Computation, 7,
1129–1159.

Bell, Anthony J., & Sejnowski, Terrence J. (1997). The independent components of
natural scenes are edge filters. Vision Research, 37, 3327–3338.

Bogacz, Rafal, Brown,MalcolmW., & Giraud-Carrier, Christophe (2001). Emergence
ofmovement sensitive neurons’ properties by learning a sparse code for natural
moving images. Advances in Neural Information Processing Systems, 13, 838–844.

Bogacz, Rafal, & Gurney, Kevin (2007). The basal ganglia and cortex implement
optimal decision making between alternative actions. Neural Computation, 19,
442–477.

Chen, J.-Y., Lonjers, P., Lee, C., Chistiakova,M., Volgushev,M., & Bazhenov,M. (2013).
Heterosynaptic plasticity prevents runaway synaptic dynamics. Journal of Neu-
roscience, 33, 15915–15929.

Feldman, Harriet, & Friston, Karl (2010). Attention, uncertainty, and free-energy.
Frontiers in Human Neuroscience, 4, 215.

FitzGerald, Thomas H. B., Schwartenbeck, Philipp, Moutoussis, Michael, Dolan, Ray-
mond J., & Friston, Karl (2015). Active inference, evidence accumulation and the
urn task. Neural Computation, 27, 306–328.

Friston, Karl (2003). Learning and inference in the brain. Neural Networks, 16,
1325–1352.

Friston, Karl (2005). A theory of cortical responses. Philosophical Transactions of the
Royal Society B, 360, 815–836.

Friston, Karl (2008). Hierarchical models in the brain. PLoS Computational Biology,
4, e1000211.

Friston, Karl (2010). The free-energy principle: a unified brain theory? Nature Re-
views Neuroscience, 11, 127–138.

Friston, Karl, Schwartenbeck, Philipp, FitzGerald, Thomas, Moutoussis, Michael,
Behrens, Timothy, & Dolan, Raymond J. (2013). The anatomy of choice: active
inference and agency. Frontiers in Human Neuroscience, 7, 598.

Harwood, David, Ojala, Timo, Pietikäinen, Matti, Kelman, Shalom, & Davis, Larry
(1995). Texture classificationby center-symmetric auto-correlation, usingKull-
back discrimination of distributions. Pattern Recognition Letters, 16, 1–10.

Olshausen, Bruno A., & Field, David J. (1995). Emergence of simple-cell recep-
tive field properties by learning a sparse code for natural images. Nature, 381,
607–609.

O’Reilly, Randall C., & Munakata, Yuko (2000). Computational explorations in cogni-
tive neuroscience. MIT Press.

Ostwald, Dirk, Kirilina, Evgeniya, Starke, Ludger, & Blankenburg, Felix (2014). A tu-
torial on variational Bayes for latent linear stochastic time-series models. Jour-
nal of Mathematical Psychology, 60, 1–19.

Rao, Rajesh P. N., & Ballard, Dana H. (1999). Predictive coding in the visual cortex: a
functional interpretation of some extra-classical receptive-field effects. Nature
Neuroscience, 2, 79–87.

Strogatz, Steven (1994). Nonlinear dynamics and chaos. Westview Press.

http://refhub.elsevier.com/S0022-2496(15)00075-9/sbref1
http://refhub.elsevier.com/S0022-2496(15)00075-9/sbref2
http://refhub.elsevier.com/S0022-2496(15)00075-9/sbref3
http://refhub.elsevier.com/S0022-2496(15)00075-9/sbref4
http://refhub.elsevier.com/S0022-2496(15)00075-9/sbref5
http://refhub.elsevier.com/S0022-2496(15)00075-9/sbref6
http://refhub.elsevier.com/S0022-2496(15)00075-9/sbref7
http://refhub.elsevier.com/S0022-2496(15)00075-9/sbref8
http://refhub.elsevier.com/S0022-2496(15)00075-9/sbref9
http://refhub.elsevier.com/S0022-2496(15)00075-9/sbref10
http://refhub.elsevier.com/S0022-2496(15)00075-9/sbref11
http://refhub.elsevier.com/S0022-2496(15)00075-9/sbref12
http://refhub.elsevier.com/S0022-2496(15)00075-9/sbref13
http://refhub.elsevier.com/S0022-2496(15)00075-9/sbref14
http://refhub.elsevier.com/S0022-2496(15)00075-9/sbref15
http://refhub.elsevier.com/S0022-2496(15)00075-9/sbref16
http://refhub.elsevier.com/S0022-2496(15)00075-9/sbref17
http://refhub.elsevier.com/S0022-2496(15)00075-9/sbref18
http://refhub.elsevier.com/S0022-2496(15)00075-9/sbref19

	A tutorial on the free-energy framework for modelling perception and learning
	Introduction
	Simplest example of perception
	Exact solution
	Finding the most likely feature value
	A possible neural implementation
	Learning model parameters
	Learning the relationship between variables

	Free-energy
	Scaling up the model of perception
	Increasing the dimension of sensory input
	Introducing hierarchy

	Local plasticity
	Learning variance of a single prediction error node
	Learning the covariance matrix

	Discussion
	Acknowledgments
	The original neural implementation
	Derivation of plasticity rule for connections between layers
	References

