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The origin of spikes in single neurons was essentially solved by the 
Nobel-prize winning Hodgkin–Huxley model developed in the 1950s. 
Drawing directly from detailed neurophysiological recordings of 
the squid giant axon, this model ascribes the origin of spikes to the 
interaction of fast depolarizing and slow hyperpolarizing currents, 
expressed in precise mathematical form1. While research into the 
computational properties of spikes has flourished, movement and per-
ception do not typically arise from the spikes of single neurons but by 
the collective behavior of many cortical, thalamic and spinal neurons 
in large-scale systems of the brain2,3. Moreover, macroscopic func-
tional imaging data such as functional magnetic resonance imaging 
(fMRI) and electroencephalography (EEG) reflect the collective activ-
ity of thousands of neurons4. As yet, there no broadly accepted math-
ematical theory for the collective activity of neuronal populations. 
Traditionally, the analysis of cognitive and functional neuroimaging 
data has thus largely proceeded without formal biophysical models 
of the underlying large-scale neuronal activity.

Is such a macroscopic model conceivable in neuroscience, and if 
so, where are the guideposts? There are many branches of science—
magnetism, fluid dynamics, ecology—where observed phenomena 
reflect collective behavior and not that of individual units. Research 
in these fields is grounded in precise mathematical laws that govern 
macroscopic variables such as magnetic fields, fluid flow and popu-
lation dynamics5. These laws provide a framework for integrating, 
explaining and predicting empirical data. Are the collective dynamics 
of neurons amenable to the ‘mean field’ approaches that underpin 
these fields?

There do, in fact, exist mean field neural models6–8. Their origin 
also dates back half a century, to the same type of detailed empiri-
cal and theoretical work that characterized the development of the 

Hodgkin–Huxley model9. Such models do not describe the behav-
ior of individual spiking neurons, but rather the collective action of 
populations of neurons10. These models have found broad success in 
modeling seizures11, encephalopathies12,13, sleep14, anesthesia15, rest-
ing-state brain networks16,17 and the human alpha rhythm18,19, and 
as a tool for multimodal data fusion20. Technical advances in model 
inversion (estimating the likelihood and parameters of a model from 
empirical data) place mean field models within reach of widespread 
application to cognitive neuroscience21.

Yet the penetration of dynamic models of large-scale brain activ-
ity into mainstream neuroscience has been slow, and they may be 
unknown to many neuroscientists. Some of the reasons are technical: 
testing the predictions of these models is challenging. Other reasons 
may be historical and cultural: neuroscience research has historically 
prided itself on a very detailed description of individual neurons, 
their biological components and the computational properties of their 
spikes. Several large international projects aim to capture these very 
details through brute-force modeling of large numbers of neurons. To 
many neuroscientists, a mean field approach discards all of the cell- 
and circuit-specific information that has been carefully curated.

Models of collective neuronal activity can be crucial to an under-
standing of perception and behavior, as well as the determinants of 
large-scale neuroimaging data. Such models also have their caveats, 
both technically (limiting their immediate utility) and conceptually 
(placing bounds on their ultimate utility). This review provides a 
didactic introduction to dynamic models of large-scale brain activity, 
from the tenets of the underlying theory to challenges, controversies 
and recent breakthroughs.

Dynamic models of brain activity: core concepts
Dynamical systems theory. Dynamical systems theory originated 
in the 1600s with Newton and Leibniz, who developed calculus to 
study celestial mechanics—the motion of the stars and planets. At 
the heart of this theory are differential equations that express the 
temporal dynamics of a system’s state variables according to the physi-
cal laws governing the system (see Box 1). For planetary motion, the 
state variables correspond to the position and velocity of the planets.  
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Movement, cognition and perception arise from the collective activity of neurons within cortical circuits and across large-scale 
systems of the brain. While the causes of single neuron spikes have been understood for decades, the processes that support 
collective neural behavior in large-scale cortical systems are less clear and have been at times the subject of contention. 
Modeling large-scale brain activity with nonlinear dynamical systems theory allows the integration of experimental data from 
multiple modalities into a common framework that facilitates prediction, testing and possible refutation. This work reviews the 
core assumptions that underlie this computational approach, the methodological framework that fosters the translation of theory 
into the laboratory, and the emerging body of supporting evidence. While substantial challenges remain, evidence supports the 
view that collective, nonlinear dynamics are central to adaptive cortical activity. Likewise, aberrant dynamic processes appear to 
underlie a number of brain disorders. 
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The differential equations in classical mechanics arise from Newton’s 
second law. For neural dynamics, such as the Hodgkin–Huxley model, 
the state variables consist of the membrane potential and ion channel 
conductances. The differential equations are derived from the bio-
physics of ion flow through voltage-gated channels, the conversion 
of the membrane potential into a firing rate and other biophysical 
properties of neurons1 and neural populations10,22.

The differential equations for the motion of two planetary bodies 
can be solved analytically, yielding elliptic paths through space with 
positions that can be precisely predicted. However, the motion of three 
bodies is more complex and cannot in general be solved, even though 
physical solutions clearly exist23. This underscores the limitations of 
a purely algebraic approach (writing down and solving equations). 
As grasped by Poincaré in the late 1900s, for every algebraic form of 
a dynamical system there exists a geometric, or phase space, equiva-
lent24. This space is spanned by all of the system’s state variables. For 
celestial mechanics, it is equivalent to actual physical space, but for 
neuronal systems, it is the more abstract space spanned by conduct-
ances, membrane potentials and firing rates. A point in this space cor-
responds to a unique combination of the system’s states (Fig. 1a). The 
system’s differential equations then prescribe a flow (Fig. 1b)—the 
temporal change of the system from each of its possible states. Such 
flows link to form orbits (Fig. 1c), yielding time series for each of the 
states. Poincaré’s great insight was to glimpse the attractors that these 
orbits converge toward (Fig. 1d): objects ranging from fixed points, 
cycles and toroids to strange attractors24. These attractors capture all 
the characteristics of the activity of the system: steady state, periodic, 
quasiperiodic and chaotic. For example, regular, periodic spiking of a 

neuron corresponds to a limit cycle attractor (Fig. 1e). When a slow 
rectifying current is added (the z variable in Fig. 1f,g), simple neural 
models can exhibit chaotic oscillations—random, aperiodic oscilla-
tions arising from completely deterministic equations (Fig. 1g).

Poincaré used this geometric approach to show how three interact-
ing celestial bodies can exhibit chaotic behavior, hence solving the 
problem geometrically24. In contemporary times, algebra, geometry 
and numerical simulations are all employed to provide a complete 
picture of dynamics25,26.

Bifurcations and multistability. An attractor is structurally sta-
ble when a small change in the system’s parameters leads to a slight 
change in its shape. If the attractor changes dramatically, it is said to be 
unstable, and the corresponding parameter value is called a bifurcation 
point. In some systems, two or more attractors can coexist for the same 
set of parameters, enclosed by their basins of attraction and separated 
by basin boundaries. Such a system is said to be multistable. A multist-
able system will exhibit different forms of activity, such as a steady state 
equilibrium or chaotic oscillations, depending on its starting state. Such 
a system can also be knocked from one attractor to another by a pertur-
bation that ‘bumps’ the state between the basins. Deep insights into the 
nature of simple motor behavior, such as switching from syncopated to 
anti-syncopated finger tapping, have been obtained through models of 
multistable dynamical systems27. We return to multistability below.

Noise and stochastic calculus. The activity of a population of  
neurons embodied in the brain inevitably occurs in the presence of 
noise—stochastic fluctuations due to thermal energy, ion channel 

Box 1 Dynamical systems theory definitions 
State variables are the dynamically changing quantities required to describe a system of interest. For celestial motion, these are the position and 
velocity of the planets. For a single neuron, these include the membrane potential and conductances of ion channels. For a neural mass model, state 
variables correspond to mean firing rates, synaptic currents and membrane potentials of each neural type of interest.

A system’s parameters are those quantities that can be considered constant when modeling dynamically changing state variables. Examples can include 
the mass of a planet, the Nernst potential of an ion species or the density of synaptic connections between different neurons.

A differential equation describes how the state variables change as a function of the current states and the system parameters. The most famous dif-
ferential equation is Newton’s second law, F = ma, or more formally dV/dt = F/m, where a is the acceleration and V is the velocity of a particle of mass 
m under the influence of a force of strength F.

An analytic solution to a differential equation is a mathematical equation that gives the exact future state of a system. For example, a stationary parti-
cle of mass m will have velocity V = Ft/m and be displaced x = Ft2/2m under the influence of a constant force F.

A phase space is the geometric space spanned by all of the system’s equations. If the system has N state variables, then its phase space will be of 
dimension N. The state of the system then corresponds to a single point in this space. The differential equation of a system for a single state gives a 
vector in phase space (Fig. 1a).

The flow of a dynamical system corresponds to the vectors for all points in phase space. An orbit is a curve in phase space that follows the system’s 
flow (Fig. 1c). It is hence a geometric representation of solution of the system.

After initial transients, orbits converge onto an attractor (a point, limit cycle, etc.). An attractor is said to be structurally stable when a small change in 
the system parameters only lead to a small (and deformable) change in its morphology; otherwise it is said to undergo a bifurcation.

If there is more than one attractor, then the system is said to be multistable. Each attractor is surrounded by its own basin of attraction—all of the 
points in phase space that flow onto that attractor. Basins are separated by basin boundaries.

A fixed-point attractor corresponds to a steady state solution in a system that has reached a stable equilibrium. A limit cycle is a simple closed orbit 
that yields periodic oscillations. A strange attractor is a complex fractal orbit characterized by unstable, diverging orbits. A strange attractor yields 
chaos—deterministic but aperiodic oscillations.

A saddle is similar to an attractor except that it always has at least one escape (an outset). It is thus dynamically unstable. Saddles can be linked into a 
sequence (‘heteroclinic cycle’). These yield a form of winnerless dynamics called metastability (where, unlike in multistability, there are no attractors).

Criticality arises in a system whose attractor is only weakly stable (for example because it is near a bifurcation). The presence of noise causes very long, 
slow stochastic fluctuations with scale-free statistical properties.

A numerical simulation of a dynamical system is obtained by applying a numerical integration scheme to the dynamical model of interest. For models 
of large-scale brain dynamics, these require a scheme that can integrate high-dimensional systems in the presence of noise and time delays26.
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chattering and irregular synaptic inputs from other neurons28,29. Such 
fluctuations arise from both internal and external sources. Adding 
noise to a dynamical system corresponds to adding small perturba-
tions to the orbits at each time step. While the mathematics of sto-
chastic differential equations is not trivial, the landscape of orbits, 
attractors and bifurcations still provides guidance30. For example, 
a stable limit cycle will still yield oscillatory activity, although with 
fluctuating amplitude and frequency. Noise added to a multistable 
system can cause erratic switching among the attractors31. While most 
of the basic theorems of classic calculus were established centuries 
ago, stochastic calculus emerged with the study of diffusion in the last 
century (one of Einstein’s contributions) and remains a very active 
field, thanks in part to efforts to predict financial markets.

Models of large-scale brain dynamics are thus rooted in stochas-
tic calculus. Although they may differ in their implementation, they 
derive from differential equations for pools of spiking neurons with 

two key ingredients: a coupling term that represents synaptic interac-
tions between neurons and tends to promote synchronization within 
the ensemble and a stochastic term that tends to disrupt this effect. The 
resulting ensemble dynamics reflect this mix of nonlinear neural dynam-
ics, interneural coupling and noise16,17. We now address the framework 
that underpins the study of these noisy ensemble dynamics.

Principles of collective neural behavior
Single-cell spikes are highly nonlinear, but do such nonlinearities 
appear in macroscopic neuronal activity, and, if so, what processes 
‘transport’ nonlinear dynamics across scales32? What is the suitable 
form for the equation that best describes such collective dynamics? 
There are a number of ways to address these questions.

The neural ensemble approach. Arguably the simplest approach to 
this problem is to assume that at large spatial scales, the exact states 
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Figure 1 A dynamical system is defined by a differential equation dX/dt = f(X). Here X is composed of the two state variables x (the cell membrane potential) and  
y (the conductance of a fast-depolarizing ion channel). (a) The phase space is the geometric space spanned by the state variables: in this case, simply the 
Cartesian plane composed of axes for x and y. The dynamical system then defines a vector of length and direction given by f(x,y) at each point—that is, for 
each combination of membrane potential and ion channel conductance. (b) The flow (also called a vector field) is the set of all such vectors and shows how 
the dynamical system will flow through phase space: here, a distinctive clockwise flow is evident. (c) An orbit is a solution to the flow—a smooth line that is 
tangent to the flow. (d) Orbits converge onto the attractors, the long-term solutions of the system. Here there is just a single limit cycle attractor (red) reached 
from many different starting points (other colors). (e–g) By adding a slow recovery variable z (middle), the system can show a simple limit cycle (e, top), 
corresponding to regular spiking (e, bottom); or a more complex limit cycle (f, top), yielding regular bursting (f, bottom); or a chaotic (strange) attractor  
(g, top) with irregular spiking (g, bottom) when the time scales of the spiking and recovery variable mix.
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of individual neurons are irrelevant and, moreover, the states of neu-
rons across the ensemble are not correlated (Fig. 2a). The central 
limit theorem states the sum of uncorrelated random processes con-
verges to a Gaussian probability distribution, even if the individual 
processes are highly non-Gaussian (Fig. 2b). According to this ‘dif-
fusion approximation’, the entire neural ensemble activity, consisting 
of highly nonlinear but largely uncorrelated spikes, can be reduced to 
a standard normal probability distribution possessing simple linear 
statistics. The activity of such an ensemble of neurons—a patch of 
cortex—can hence be described by the mean and variance of the fir-
ing rate. The mean firing rate reflects the response of the population 
to its total synaptic inputs and hence drifts up and down in response 
to increasing or decreasing afferent input33. The variance reflects the 
dispersion (roughness) of all stochastic effects and will change as the 
variance of the noise changes.

The equation that describes the dynamics of such a linear, normally 
distributed ensemble is called the Fokker–Planck equation (FPE). An 
FPE for a neural ensemble can be analytically derived from simple 
(integrate and fire) single-neuron models under the assumption that 
the diffusion approximation holds true34–38. The FPE captures the 
collective response of a neuronal population to its inputs. Each neuron 
responds to its own inputs and effectively submits an independent 
vote to the ‘democratic’ collective. The mean firing rate is essentially 

a passive summation of all these responses and encodes the average 
(the most likely) population-based representation of its inputs. The 
FPE also describes the dynamics of the population variance, corre-
sponding to the precision with which the ensemble response is rep-
resented39,40. As the inputs to the ensemble change, the FPE captures 
the drift (of the mean) and diffusion (change in the variance) of the 
ensemble activity (Fig. 2c).

The FPE is an analytically achievable representation of how local 
populations represent their inputs. Individual nonlinearities, local 
correlations between neurons, and subtle differences within families 
of neurons are all accommodated by the diffusion approximation. 
An FPE reduces the thousands of degrees of freedom of a brute-force 
model of spiking neurons to two variables capturing the mean activ-
ity and the dispersion around that mean. Such dimension reduction 
is at the heart of efforts to move beyond brute-force accounts of the 
brain41. The Gaussian distribution maximizes the ratio of the entropy 
to the variance of any distribution; the potential information content 
of an ensemble of neurons is thus at its upper limit when it obeys a 
FPE. The linear FPE may therefore be seen as the starting point for 
large-scale models of neuronal systems.

When the statistics of a local ensemble are Gaussian, the stand-
ard FPE represents a powerful and parsimonious way of balancing 
complexity with tractability. However, converging evidence from a 
variety of neuronal recordings suggests that although the spatial42 
and temporal12,43,44 statistics of neural population activity do con-
form to simple probability distributions, these are often heavy-tailed 
and not Gaussian. Such heavy tails correspond to the occurrence of 
synchronized bursts of activity that violate the diffusion assumption 
(Fig. 2d). In brief, erratic bursts of synchronization transport cor-
related states from the micro-scale to the macroscopic scale, causing 
non-Gaussian fluctuations (Fig. 2e and Box 2). What are the options 
for modeling heavy-tailed neural ensembles? Reassuringly, when the 
statistics obey other simple probability distributions (such as a power 
law), there do exist well defined and tractable (nonlinear or fractional) 
FPEs. The theoretical armory of random field theory can be adapted 
to these well-behaved non-Gaussian scenarios. These more general 
FPEs are hence potentially very useful for modeling neural ensembles 
with strong correlations and heavy-tailed statistics. However, while 
this is an active area in theoretical physics, it is a relatively unexplored 
avenue in neuroscience. We thus consider other possibilities below.

Neural mass models. In the presence of strong coherence, it may be 
reasonable to assume that the ensemble activity is sufficiently close to 
the mean that the variance can be discarded. This reduces the number 
of dimensions to one and allows multiple interacting local popula-
tions, such as excitatory and inhibitory neurons in different layers of 
cortex, to be modeled by a small number of equations, each describ-
ing the mean activity of a neural population45,46. This mass-action 
approach is at the heart of neural mass models (NMMs)10.

NMMs come in several flavors. One class is derived by assuming 
that coherence between neurons is so strong that the dynamics of 
the entire ensemble of neurons resembles that of each single neuron. 
Accordingly, the mean ensemble activity is modeled with the same 
conductance-based model as used in single-neuron models. This 
assumption is relaxed somewhat by replacing the all-or-nothing fir-
ing of individual neurons with a sigmoid-shaped activation function 
that maps the average membrane potential to the mean firing rate 
(Fig. 3a). The breadth of this sigmoid function implicitly incorporates 
the variance of individual neural thresholds, as well as the dispersion 
of their states47. The central difference between such NMMs and the 
FPE is that the variance is constant in NMMs whereas it is free to vary 
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Figure 2 Principles of the neuronal ensemble reduction. (a) Complex spatial 
systems composed of interacting components, such as human cortical 
columns, are characterized by interactions that weaken with distance. 
(b) If the resulting correlations decay quickly compared to the size of the 
system, the statistics of the system converge toward a Gaussian distribution 
(inset), even if the statistics within the individual components are highly 
non-Gaussian. (c) The Fokker–Planck equation describes how the statistics 
passively change when the inputs and strength of stochastic fluctuations 
change. Here the inputs increase and the noise becomes less influential. The 
mean rate drifts up and the ensemble distribution becomes more precise as 
we move in the direction of the arrow. (d) If correlations within the system 
become stronger—for example, owing to synchrony—the correlation length 
diverges toward the size of the system in the direction of the arrow toward 
the blue curve. The assumptions underlying the diffusion approximation 
may not be met. (e) If strong ensemble correlations exist, the statistics 
may converge toward a non-Gaussian distribution (blue curve). Typical 
fluctuations shrink toward the mean (and hence the distribution becomes 
more tent-like), but the left and right tails (extremes) become fatter, 
corresponding to infrequent but high-amplitude, synchronous fluctuations.
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in the FPE. NMMs of this kind often consist of a conductance-based 
spiking excitatory neuron pool coupled to a passive local inhibitory 
pool and can exhibit steady state, periodic or chaotic oscillations48,49. 
This last case arises through the mixing of fast and slow time scales.

A second way to construct NMMs adopts the approach of Hodgkin 
and Huxley—namely, using careful empirical observations to under-
stand and model the response of the system to its inputs. Hodgkin 
and Huxley carefully observed the conductance of a single axon in 
response to changes in the membrane potential. Similarly, early neural 
mass models were derived from careful observation of the collective 
response of a neural population (the rabbit olfactory bulb) to changes 
in driving inputs9. This approach respects the notion that complex 
systems can exhibit specific rules at different levels of organization 
and that large-scale activity may hence be more than the sum of its 
parts. Empirically informed NMMs include the Wilson–Cowan22 and 
Jansen–Rit45 models. There also exist hybrid methods that combine 
theoretical treatments of population dynamics with empirical synap-
tic and input-response functions50–52.

Large-scale brain dynamics
Networks of neural masses. A NMM describes a local population of 
interacting neurons, such as pyramidal and inhibitory cells. Despite 
the dimension reduction achieved, there still exist several orders of 
magnitude between a small patch of cortex and the large-scale systems 
that support brain function. Bridging these scales can be achieved 
by coupling an ensemble of NMMs into mesoscopic circuits10,53 and 
macroscopic systems54. Dynamics within each neuronal population 
node (that is, each NMM) consequently reflects the local population 
activity plus influences from distal regions (other nodes) and sto-
chastic fluctuations (Fig. 3b). Such large-scale brain network models 
(BNMs) are a multiscale ‘ensemble of ensembles’, with distinct prin-
ciples of organization operating at different scales55.

The coupling of NMMs into a larger system should be informed 
by anatomical connectivity; that is, the connectome. Suitable connec-
tomic data can be obtained from collations of invasive tracing studies, 
such as the primate CoCoMac56 or recent detailed rodent connec-
tomes57. For human brain models, large-scale connectivity data can 
be inferred from diffusion MRI-based tractography. The modeling 

community has employed both of these options. The resulting whole-
brain dynamic models differ in the choice of the local NMM, the 
treatment of conduction delays between nodes and the role of chaotic 
versus stochastic dynamics16,17,58. This is a powerful approach that 
integrates decades of work on NMMs with the study of complex brain 
networks26,59. The application of BNMs to resting-state fMRI data is 
a very active area that we review below.

Neural field models. BNMs treat the cortex as a discrete network of 
dynamic nodes coupled through the connectome. But at macroscopic 
scales, the cortex may also be treated as a continuous sheet composed 
of dense short-range connections that quickly (exponentially) dimin-
ish in number with inter-areal distance57. Large-scale neural mod-
els that treat the cortex as a continuous sheet—neural field models 
(NFMs)—draw on well-established field models in other complex sys-
tems and have a rich history in computational neuroscience60,61. The 
most general formulations use a combination of differential equations 
(for the treatment of time) and integrals (for the treatment of spatial 
coupling and time delays)22,62. For biologically realistic assumptions 
regarding the synaptic kernel (the local connectivity footprint), it 
is possible to write this as a wave equation—a partial differential 
equation with temporal and spatial derivatives6–8,63. Additional ana-
tomical features, such as corticothalamic loops18 and patchy connec-
tivity64,65, can also be incorporated (Fig. 3c). NFMs have provided 
insights into the contribution of large-scale cortical systems to cortical 
rhythms18, transitions to and from sleep14, epileptic seizures11,18 and 
evoked potentials66. The excited modes of a whole brain neural field 
model—the small number of spatiotemporal patterns that capture 
most of the system’s energy—show a striking match to the canonical 
resting-state networks67. NFMs are, at their heart, nonlinear wave 
models60. They thus promise to account for the broad spectrum of 
wave-like empirical data, such as the propagating fronts of oscillatory 
activity observed in sensory and motor cortices68–70.

While detailed node-to-node network connections pervade 
accounts of the human connectome, it is also true that coupling 
between adjacent patches of cortex is stronger than the long-range 
connections that integrate cortical circuits into large-scale systems71. 
Recent highly resolved tracer- and tractography-based connectomes 

Box 2 Beyond the linear Fokker-Planck equation 
The traditional (linear) FPE rests on the diffusion assumption, namely that the activities of neurons or groups of neurons are not correlated when mea-
sured at different points across the system of interest (Fig. 2a–c). The FPE can accommodate spike correlations among neurons within small circuits, 
but requires that correlations between more distant neurons are weak and disappear entirely at the scale of the entire system36. Put alternatively, the 
correlation length is considerably shorter than the spatial scale of the system, and ensemble fluctuations are thus the passive sum of uncorrelated 
smaller scale events. Does this assumption hold empirically? Converging evidence from a variety of neuronal recordings suggests that although the spa-
tial42,43 and temporal120 statistics do conform to simple probability distributions, these are often heavy-tailed and not Gaussian. The heavy tails arise 
from fluctuations that are larger and more frequent than permitted under the diffusion approximation and correspond to the formation of transient but 
nontrivial correlations among distant neurons. Correlations among neurons arise from synchronization either in their firing or in the modulations of their 
firing rates. Long-range correlations thus arise when the underlying tendency for coupled dynamical systems to synchronize overwhelms the disruptive 
effects of the noise within the ensemble (Fig. 2d). Neurons no longer filter their inputs and passively contribute to the ensemble mean, but synchronize 
to dynamic feedback from the mean, which acts to increase the coherence (as when voters react to real-time feedback of a poll).

The dynamic, multiscale recruitment of neurons into large synchronous ensembles thus causes their states to converge toward the ensemble mean 
(that is, the variance shrinks and the kurtosis increases; Fig. 2e)147. Owing to the resulting statistical redundancy between neurons, the entropy of the 
ensemble thus decreases. Paradoxically, this reduction in entropy may confer a computational advantage because the useful information in a system 
depends on not only the entropy (information diversity) but also the reliability148: that is, on the balance between entropy and redundancy.

What are the options for modeling neural ensembles with heavy-tailed activity? When the statistics obey other simple probability distributions (such 
as a bimodal or power-law function), there do exist well-defined and tractable nonlinear and fractional FPEs. Nonlinear FPEs contain higher order 
interactions between the mean and noise terms. A system (such as a financial market) that becomes more volatile during high throughput (such as 
high-volume trading) can be modeled with a nonlinear FPE. The fractional FPE arises from a generalization of calculus to model stochastic systems 
with memory and persistent long-range correlations—as observed widely in neuroscience, such as in the fluctuations of the alpha rhythm149. It rests on 
a deep reformulation of calculus. Although conceptually appealing, fractional calculus has thus far had few applications in neuroscience150.
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provide converging evidence for a synaptic footprint that is largely 
invariant (similar throughout the cortex), creating a smooth con-
nectivity that is modulated by specific long-range network con-
nections57,72. This highlights the geometric attributes of cortical 

connectivity and supports the assumptions underlying NFMs. The 
integration of BNMs and NFMs into a single framework is an active 
area of research that aims to reconcile the apparently contradictory 
aspects of these large-scale brain models64,73.
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Large-scale neural activity: empirical findings
Models of large-scale brain dynamics thus derive from detailed, 
theoretical treatments of neural population dynamics. However, the 
validity of a dynamic model of the brain is ultimately an empirical 
question: what is the evidence that such models can explain, pre-
dict and unify neurophysiological data? What tools are required to 
appraise this question?

The rise and fall of chaos theory. For parameter values correspond-
ing to high gain and strong synaptic input, neural mass and neural 
field models yield highly nonlinear dynamics. Limit cycle attractors 
have been proposed to underlie the brain’s large-scale oscillations, 
including the alpha22 and beta74 rhythms. Chaotic attractors also arise 
in NMMs, yielding complex, aperiodic nonlinear oscillations48. The 
presence of such nonlinear waveforms in macroscopic signals such as 
EEG would provide compelling support for these models and, more 
deeply, for the implicit assumption on which they rest: namely, that 
through synchrony, collective neuronal dynamics retain the nonlin-
earities present at the microscopic scale.

Chaotic dynamics arise from unstable nonlinear processes, yielding 
complex attractors with fractal geometry. In the 1980s, new com-
putational algorithms allowed the quantification of these properties 
in empirical data75,76. The broad appeal of chaos—the emergence 
of complex dynamics from simple rules—fueled the application of 
these algorithms to data from diverse systems. As in many fields, 
large-scale neurophysiological data, acquired during rest77,78, sleep79, 
cognition80 and seizures81, were subsequently observed to possess the 
classic hallmarks of chaotic dynamics.

The algorithms for detecting chaos certainly yielded valid results 
for the theoretical dynamical systems in which they were devel-
oped—lengthy time series data obtained by integrating nonlinear 
systems. Unfortunately, substantial limitations were soon identified 
in the application of these algorithms to noisy, nonstationary and 
often relatively brief empirical data. In particular, it was shown that 
filtered (linear) noise could also yield the numeric values that had 
been previously associated with chaos82–84. Recognition of these limi-
tations led to a reappraisal of prior findings and to more circumspect 
conclusions regarding the role of simple chaotic dynamics in large-
scale neural systems85,86.

In retrospect, the initial application of measures of chaotic dynam-
ics to time series data may have reflected a confirmation bias—an 
implicit objective to show that empirical data are consistent with an 
appealing theoretical framework. Alternative hypotheses—that the 
measures of chaos might be generated by filtered linear noise with 
no further temporal structure, for example—were not systematically 
tested. The ability to represent the null hypothesis for the values of 
these measures (representing trivial, nonchaotic fluctuations) was 
facilitated by the development of resampling algorithms in the early 
1990s87,88. These resampling algorithms yield surrogate data of the 
same length and possessing the same linear properties as the original 
data but with any putative nonlinear structure destroyed. By deriv-
ing the nonlinear metrics from these surrogate data, it is possible to 
construct the null hypothesis—the expected distribution of values 
due to trivial linear correlations and finite sample length. Only those 
empirical data whose measures fall outside this null distribution can 
be said to possess nonlinear properties such as chaos.

Bifurcations and multistability in human cortex. The reappraisal 
of nonlinear structure in large-scale neurophysiological data using 
null hypothesis testing led to a consensus that is more qualified than 
the early reports of simple chaos. Robust89 and replicated90 analyses 

of resting-state EEG data using surrogate data suggest that healthy 
cortical activity is not chaotic, but rather jumps erratically between a 
high-amplitude, nonlinear 10 Hz oscillation and low-amplitude fil-
tered noise (Fig. 4a)—that is, the resting cortex operates in a regime 
of multistability consisting of a limit cycle and a fixed point attractor 
(Fig. 4b)31,91,92. It was later shown that a corticothalamic NFM could 
yield a multistable attractor landscape in the presence of biophysically 
plausible corticothalamic feedback. When driven by noise, this model 
erratically switches between the fixed point and limit cycle, yielding 
time series data whose spectra and higher statistical properties show 
close agreement with experimental data (Fig. 4c)19.

The application of null hypothesis testing using surrogate data thus 
substantially changed our understanding of nonlinear dynamics in 
healthy cortex. However, the initial reports of sustained nonlinear 
dynamics during seizures did survive surrogate data testing. That is, 
the onset of a seizure is thought to correspond to the appearance of 
sustained high-amplitude nonlinear oscillations, suggesting a bifurca-
tion from resting state to a limit cycle or chaotic attractor11,93. Again, 
this observation is supported by NMMs94,95 and NFMs18, which pre-
dict that a bifurcation in the underlying large-scale cortical96 and 
corticothalamic11 dynamics yields primary generalized seizures. 
While further challenges remain, observations of multistability in 
health and of bifurcations in seizures confirm the core assumptions 
underlying large-scale models: namely, that dynamical processes may 
occur at the largest scale of the brain and are not passively washed 
away in the noise.

Emerging topics in large-scale neuronal models
Testing, comparing and refuting models. Surrogate testing of empir-
ical data provides an opportunity to confirm or refute the implicit 
assumptions underlying large-scale neural models. However, fur-
ther steps are required to establish the validity of any specific model. 
Neural models predict the underlying neural states (firing rates, 
membrane potentials, etc.). While the mass action of these models 
yields aggregate dynamics that match the spatial apertures of imaging 
data, the neural states are hidden (not directly observable). Scalp EEG 
arises from macroscopic ion currents, yielding voltage changes refer-
enced to a distal electrode. Biophysically informed forward models 
are required to understand the mapping from currents in the folded 
cortex to fluctuating extradural electrocorticographic and scalp EEG 
potentials. Likewise, spatiotemporal hemodynamic response func-
tions are required to map large-scale neural activity to fMRI data97. 
When combined with measurement noise, these biomagnetic and 
hemodynamic forward models provide a principled way of testing 
the predictions of large-scale models of the brain against empirical 
data. Just as the classic accounts of planetary motion rested on the 
theory of optics, inference regarding models of large-scale neural 
activity depend on valid observation models. By allowing prediction 
of multiple streams of data, each through its own forward model, this 
approach also permits fusion of multimodal data such as simultane-
ously acquired EEG and fMRI20,98,99 (Fig. 5).

The specific predictions of a model also depend on the choice of 
its parameters: the gain, inputs, strengths of coupling and noise, etc. 
Fine-tuning by hand is often impractical and lends itself to overfitting; 
that is, using a complex combination of parameters that are unique to 
a specific data set and generalize poorly. More technically, model pre-
dictions are conditioned on the choice of parameters. Integrating out 
this dependency can be achieved within a Bayesian framework, which 
allows estimation of the probability of a model prediction given the 
likely (prior) distribution of its parameter values. The likelihood of a 
specific model can then be estimated though inversion by introducing 
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a term that penalizes model complexity. Different models, embody-
ing different hypotheses about the brain, can thus be compared and 
ranked according to their likelihood. This Bayesian approach is now 
well established for magnetoencephalography (MEG), EEG and fMRI 
data within the framework of dynamic causal modeling100,101. While 
dynamic causal modeling rests on the mean field assumptions out-
lined above, it has been most widely applied to simple, linearly stable 
NMMs. Recent advances in system estimation facilitate its application 
to nonlinear phenomena such as bifurcations and multistability21. 
Further advances here, exploiting the multimodal and heavy-tailed 
statistics that these dynamics yield, remain an exciting prospect.

Whole brain dynamics. The high temporal resolution and availability of 
EEG data made it the modality of choice for models of large-scale neu-
ronal dynamics. Considerable interest is now directed toward dynamical 
structures in MEG102 and resting-state fMRI data103, which provide 
whole brain coverage. Whereas a single time-averaged functional  

connectivity matrix was classically used to summarize resting-state activ-
ity, recent work has highlighted the nonstationarities that characterize 
time-dependent activity103. These nonstationarities have been ascribed 
to temporal dynamics in the underlying cortical network activity, such as 
an alternating sequence of high and low neural synchrony104,105. Rather 
than viewing the ‘resting’ brain as reflecting a passive idling state, this 
view supports the notion of an active binding and unbinding of integra-
tive activity in order to pre-empt a dynamic external milieu2,54,89,106.

Large-scale models currently find their most active use in providing 
candidate mechanisms for these dynamics105,107. These mechanisms 
differ, depending on the nature of the data analyzed (EEG, MEG, 
electrocorticography or fMRI) and the details of the model employed. 
Most models invoke some form of instability, such as extensions of the 
multistability used to model fluctuations in surface alpha power19,31. 
Models using chaotic attractors16,104 invoke a form of metastability 
known as chaotic itineracy, relatively long periods of high synchrony 
punctuated by brief bursts of desynchronization90. Metastability can 
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also arise in whole brain models with limit cycle attractors17 owing 
to the dynamic ‘frustration’ caused by time-delayed interactions17,108. 
A further scenario rests on the role of ghost attractors109, a dynamic 
landscape of remnant attractors each of which has an incomplete 
basin, hence allowing the system to ‘wander’ through large swathes 
of the phase space under the influence of weak noise110.

The cause of nonstationarities in resting-state fMRI also remains 
a topic of empirical debate: are they of neuronal or physiological ori-
gin? If all physiological confounds (such as cardiac and respiratory 
activity) and sources of artifact (such as head motion) are vigorously 
‘scrubbed’, the nonstationarities are greatly diminished and possibly 
disappear completely111. Putting aside the need for further empirical 
analyses, there does remain an unresolved dilemma here: given the 
close coupling between the brain and body, how much physiology 
can be considered a confound when studying fluctuations in cortical 
activity? Changes in physiological signals do not merely signal coarse 
changes in arousal such as sleepiness. Physiological fluctuations have 
subtle but important cognitive effects, such as confidence in deci-
sion making112. Whereas first-order physiological signals—respira-
tion and heart rate—yield substantial confounds in the blood oxygen 
level–dependent (BOLD) signal113, second-order effects such as heart 
rate variability co-vary with specific activity in interoceptive cortex, 
such as the insula, and herald important cognitive processes such as 
anticipation114. Regressing BOLD correlates of such signals could 
hence remove true neuronal fluctuations.

The history of nonlinear dynamics in EEG also offers cautionary 
tales for this endeavor. First, linear correlations in time-series data can 
give rise to (spurious) fluctuations in time-windowed statistics115,116. 
Inferences regarding time-resolved functional connectivity should 
thus rest on the appropriate use of null hypothesis testing, using 
multivariate surrogate data that preserve linear correlations between 
time-series data88,117. Second, the term “dynamic” should refer to the 
neuronal processes that generate the data and not the observed data 
itself118: it would be more principled to refer to nontrivial fluctua-
tions in functional connectivity as “time-resolved” or “nonstationary” 
and not “dynamic” functional connectivity104. Inferences regarding 
dynamic processes that generate the data should ideally refer to the 
models recovered through model inversion92,100. Third, as considered 
above, a number of mechanisms of dynamic instability have been 
invoked to explain these nonstationarities. Multistability is only one of 
a host of dynamic scenarios that can yield complex, itinerant dynam-
ics. Criticality, which arises at the cusp of a bifurcation, yields heavy-
tailed (power law) fluctuations and is thus another candidate process 
for fluctuating correlations in resting-state fMRI data119. Metastability, 
which arises in a system with no stable attractors but rather a sequence 
of unstable saddles, has also been invoked107. Although these terms 
are often used interchangeably, each arises from distinct mechanisms 
and yields characteristic ensemble statistics44. Care should be taken 
to carefully quantify the statistics of large-scale brain activity so as to 
distinguish these mechanisms44.
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Clinical applications. This breadth of dynamical scenarios pro-
vides tremendous opportunities for clinical applications of dynamic 
brain models. We have seen how seizures have been modeled as 
bifurcations in NFMs and NMMs. Recent models that include low- 
frequency neurophysiological processes (drifts) immediately 
before a seizure offer insights into the relationship between fast 
seizure dynamics and the slow metabolic processes to which they 
are coupled96,120. It has recently been proposed that the spread 
of seizure activity from a primary zone reflects dynamics in epi-
leptogenic networks of NMMs121,122 (Fig. 6). Such insights offer  
opportunities for therapeutic interventions, including seizure con-
trol using closed loop feedback to reduce divergence from healthy, 
resting-state attractors.

The erratic high-amplitude bursts of electrical activity that follow 
preterm or hypoxic birth (burst suppression) bear the hallmarks of 
criticality123: that is, they possess power-law, scale-free statistics. Burst 
suppression in this setting has been modeled with a phenomenologi-
cal neural model sitting close to a bifurcation and coupled to a finite 
(and depletable) metabolic pool120. Burst suppression also occurs dur-
ing propofol anesthesia. Intriguingly, the spectral fingerprint of burst 
suppression in anesthesia shows characteristic rhythms124. Neural 
field models of burst suppression in this setting posit a fast-slow 
system: a complex limit cycle attractor with a series of high ampli-
tude oscillations periodically separated by a slow recovery phase125.  
This divergence between burst suppression in neonates versus 
anesthesia is an informative illustration of how nonlinear models 

can dissect an apparently unitary clinical phenomenon into distinct 
dynamical mechanisms.

The application of NMMs and NFMs to clinical neurophysiology 
data represents a fertile area, with emerging applications to many 
other neurological disorders, from Parkinson’s disease to demen-
tia126. Within the framework of dynamic causal modeling, perturbed 
dynamics in networks of NMMs have also been reported in psychiatric 
conditions. The positioning of schizophrenia as a ‘dysconnection’ syn-
drome is a natural target for this approach127. Dynamic dysconnectiv-
ity of cortical128 and fronto-thalamic systems129 in schizophrenia has, 
accordingly, been reported. Disturbances in dynamic dysconnectivity 
between key networks involved in attention and interoception appear 
to characterize the melancholic features of severe major depressive 
disorder130. Nosological classification that is based on dynamic mech-
anisms has considerable conceptual appeal in a field that is searching 
for a more principled approach than symptom clusters131.

In addition to the inversion of dynamic models of imaging data, large-
scale neuronal models may play another role in computational psy-
chiatry131. Population models that incorporate both the mean and the 
variance (that is, FPEs) may explain how the cortex encodes the value 
of its representations (through its mean) as well as the precision of those 
representations (through the variance of the states)132. Via this link to 
precision-weighted coding, FPEs represent a candidate link between 
biophysical models of neuronal activity and Bayesian accounts of cogni-
tive (dys)function132. To these prevailing accounts of population-cod-
ing, nonlinear systems theory adds insights in dynamic interactions 
between large-scale systems of the brain, such as those supporting emo-
tion and cognition in health and disease52,133. This framework also sug-
gests how nonlinear instabilities can act as tunable, endogenous sources 
of entropy134. Disturbances in these instabilities could lead either to too 
little flexibility (obsessions and rumination) or too much instability 
(disorganized thinking and impaired memory retention)135,136.

DiSCuSSion
Models of large-scale neuronal dynamics are unique in their capacity 
to explain, predict and integrate neuronal activity at the macroscopic 
scale of perception, behavior and functional imaging data. The con-
ceptual underpinnings of these models are increasingly supported by 
analyses of empirical data. By integrating diverse empirical findings 
into a unifying framework that can be iteratively refined (or refuted), 
dynamic models may also help address the ‘reproducibility crisis’ in 
neuroscience. These arguments suggest an increasingly central role 
for models of large-scale brain activity in understanding the neural 
origins of functional imaging data, such as oscillations and network 
dynamics, in health and disease.

The collective activity of a complex dynamic system is not  
necessarily the trivial sum of its components: dynamic interactions 
at one scale may yield unexpected activity at a coarser scale, a phe-
nomenon defined as emergence32. This observation motivates the 
interrogation of a system at the macroscopic scale as well as the 
scale of its parts. Just as the development of the Hodgkin–Huxley 
model derived from recordings of the axon, the development of 
NMMs derives from empirical observations of the input-response 
properties of macroscopic neural systems9. Brain stimulation tech-
nologies—transcranial magnetic stimulation and transcranial direct 
current stimulation—allow the perturbation of large-scale neural 
systems137,138. These technologies may facilitate a new era of testing 
whole brain models105,138–140.

Frontiers in models of large-scale neural systems. Further advances in  
models of brain dynamics may emerge precisely where the assumptions  
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Figure 6 Application of neural field model to human epilepsy11. (a) Human 
scalp EEG recording showing a characteristic 3 Hz absence seizure. 
Spectrogram shows fundamental 3 Hz frequency as well as higher order 
harmonics, reflective of nonlinear time series properties. Phase space 
reconstruction (right) shows rapid divergence of orbits from the resting-state 
(fixed point, blue arrow) attractor to a high-amplitude complex limit cycle 
(red arrow). (b) Left, corticothalamic neural field model perturbed through 
a 3 Hz Hopf bifurcation shows a striking match to empirical data in a 
(middle), including the overall symmetric seizure shape, the spike and wave 
waveforms at onset and offset, and the stippled spectrogram. Right, the 
onset of the seizure shows the divergence of the orbits from the fixed point 
(blue arrow) to the limit cycle (red arrow) upon introduction of nonlinear 
instabilities into the neural field model through the bifurcation. Right panels 
in a,b adapted from ref. 11, Oxford University Press.
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on which they currently rest break down. We sketched two oppos-
ing scenarios that permit a mean field approximation to neuronal 
dynamics: when correlations at the scale of the system are sufficiently 
weak that individual spikes can be ignored (leading to the FPE) and, 
conversely, when the coherence is sufficiently strong that the variance 
can be considered small and constant (leading to conductance-based 
NMMs). Converging evidence from a variety of neuronal record-
ings suggests that the spatial42,119,141,142 and temporal12,43 statistics 
of many neuronal ensembles may be scale-free. Such systems resist 
mean field reductions (because the variance is not bounded) and may 
require alternative ensemble models143–145. Future models of large-
scale brain activity may require the flexibility to accommodate all 
three scenarios: weak coherence, strong coherence and the scale-free 
fluctuations that sit between these extremes.

Large-scale models posit that perception and cognition require 
coordinated, ensemble neuronal activity. There do, however, exist 
important processes that rely on precise spike timing. Spike-time-
dependent plasticity (STDP) is a canonical example. While NMMs 
are able to assimilate probabilistic forms of neuronal plasticity such 
as frequency adaptation74 and voltage-dependent synaptic gat-
ing101, STDP relies on precise timing of spike sequences and is not 
easily accommodated. STDP has been shown to have a substantial 
impact on spiking models of ensemble behavior143. Further work is 
thus required. Similarly, while NMMs and NFMs incorporate basic 
details of synaptic interactions and their biochemical bases (prin-
cipally AMPA, NMDA and GABA receptors)53, there is a practical 
bound on how much detail can be incorporated while keeping the 
models tractable and amenable to validation. Notwithstanding this 
caveat, pharmacological challenges remain a key means of testing 
model predictions146.

A bold prediction is that neuroscience will eventually be anchored 
by a comprehensive nonlinear model that accommodates cognition 
and imaging data in a single framework40. Research would accord-
ingly proceed in multidisciplinary teams that include scientists with 
the requisite training in mathematics and physics. There is a long path 
to this end, including a deeper understanding of the ebbs and flows 
of collective behavior in complex systems. It also remains to be seen 
whether the dimension reduction at the heart of dynamic models 
is a convenient but phenomenological tool or rather a core process 
exploited by the brain to facilitate its adaptation to a dynamic milieu. 
More proximal predictions for the field include validation of a family 
of related models that target the ‘low-hanging fruit’: prediction and 
control of seizures, design and analysis of decision making experi-
ments53, and contributions to a nosological system for psychiatry. 
Achieving these proximal goals will require the increased use of com-
putational models in the design of experiments and in the analysis 
of the ensuing data.
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