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Despite many debates in the first half of the twentieth century, it is now largely

a truism that humans and other animals build models of their environments

and use them for prediction and control. However, model-based (MB) reason-

ing presents severe computational challenges. Alternative, computationally

simpler, model-free (MF) schemes have been suggested in the reinforcement

learning literature, and have afforded influential accounts of behavioural

and neural data. Here, we study the realization of MB calculations, and the

ways that this might be woven together with MF values and evaluation

methods. There are as yet mostly only hints in the literature as to the resulting

tapestry, so we offer more preview than review.
1. Introduction
Animals and humans often occupy environments in which there is a series of

distinct states which are linked by possibly stochastic temporal dynamics or

transitions. In turn, these states are associated, again possibly stochastically,

with outcomes that can be appetitive or aversive. In order to choose actions

to obtain the appetitive outcomes and avoid the aversive ones, it is typically

necessary to make predictions about the net utility of the long-run delivery

of these outcomes, given a particular candidate action.

There are widely believed to be at least two structurally different methods

for making such predictions. In the context of reinforcement learning, they

are referred to as model-free (MF) and model-based (MB) reasoning [1,2],

with the former being retrospective and the latter being prospective. Other

fields that make somewhat similar distinctions use different labels, such as

habitual and goal-directed [3–5]; not to mention yet more distant dichotomies

such as type I and type II reasoning [6,7].

The MB prediction of long-run future utility starting from a state x is based

explicitly on (i) a sum over the whole set (typically in the form of an expanding

tree) of future states that the subject’s (typically learned) model tells it to expect to

encounter following that state and (ii) the outcomes that the model tells it to

expect to receive at those potential future states, each endowed with a utility

that is assessed by a second aspect of the model. By contrast, the MF prediction

depends only implicitly on these quantities. It is underpinned by the observation

that since long-run utility is at stake, the prediction made at state x should be con-

sistent with the equivalent predictions made at the neighbouring states which the

subject visits following x [2,8]. On average, the only difference should be the uti-

lity provided at x itself. Thus, the MF prediction arises from learning from past

encounters of state x to minimize untoward inconsistencies. Even more extreme

MF systems directly couple observations to decisions, for instance using the

inconsistencies to learn appropriate actions or action sequences [9–11].

The differences between MB and MF learning matter. First, they are known

to have quite disparate computational and statistical properties [1,4]. MF pre-

dictions are computationally simple because they typically depend on little

more than a feed-forward mapping of state to predicted future utility. However,

they are statistically infelicitous, because adjusting long-run predictions by

reducing local inconsistencies between neighbouring states’ predictions fails
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to take account at every juncture of all the information that is

known about the values of more distant states. Instead, this

approach, known as bootstrapping, uses the value currently

predicted at x’s successor state as a stand-in for the value of

all rewards to follow. This biases the estimate of x, particu-

larly at the onset of learning when all the values are poorly

known. Conversely, MB methods are computationally ruin-

ous, because there are usually very many possible future

states in a long series of transitions. However, these methods

are statistically straightforward, because learning can be

temporally completely local.

Second, MB and MF methods have quite distinct psycho-

logical properties, which underpin a venerable debate about

their relative importance [4,5,12–16]. Consider what happens

when the environment changes, so that either the utility

associated with a particular outcome or some state transition

is different from its value during learning. The former could

happen if the animal learned when hungry, but is now

thirsty; the latter if a path in a maze is newly blocked or

opened. Such adjustments can affect the utility that should

be predicted at many states antecedent to where the change

occurred. Because MF methods are based on the local

reduction of prediction errors, there will be no update to pre-

dictions made at states far from the change until paths

collectively leading there have actually been experienced.

By contrast, MB predictions at distant states can alter straight-

away given observation of just the changes, because these

predictions are constructed on the fly using current infor-

mation. In normal human subjects, it seems that choice can

depend on both MB and MF methods, with the balance

being tipped to the latter by a number of manipulations

such as cognitively demanding dual tasks [17] or stress [18].

These rather clear psychological distinctions have, at least

to a degree, helped elucidate the neural circuitry involved in

MB and MF reasoning. Unit recordings and other studies

have suggested that appetitive MF learning is supported by

prediction errors carried by dopaminergic neurons in the

midbrain, driving plasticity at their targets in striatum and

elsewhere [19–21]. Meanwhile, lesion-based studies in

rodents suggest that there is also a particular role for the dor-

solateral striatum in MF control and possibly the central

nucleus of the amygdala in prediction [22–27]. Equally, ven-

tral prefrontal areas, the dorsomedial striatum, and possibly

the basolateral nucleus of the amygdala are implicated in

MB prediction and control [22,23,27]. These localizations

have also been partly verified in a set of neuroimaging

experiments in humans [28–31].

However, although these studies, and a wealth of others,

are revealing as to the regions of the brain that are involved,

much less is known about the actual mechanisms supporting

MB control in the brain. To a great extent, this is because

these experiments predominantly turn on simply detecting

MB evaluation (e.g. testing whether choices or neural signals

adjust appropriately when the environment changes) but

tend, as a group, not to address the within-trial processes

by which such computations occur. Such an experimental

approach is well matched to theories of MB planning in psy-

chology, which tend to be at Marr’s computational level.

A more detailed, algorithmic or process-level account might

serve as a framework for interpreting the neural substrate.

In reviewing different computational approaches to MB

evaluation, this review aims to lay out a set of possible

directions for filling in these gaps.
In so doing, and in contrast to existing psychological

models (and to some extent, experimental tasks) that consider

MB computation in small and tractable state spaces, we focus

on the problems that arise in more realistic domains when the

number of states or trajectories is large [4,32–34]. Then, it is

not usually possible to perform a full MB calculation, i.e. to

enumerate the full tree of future states and evaluate simu-

lated net utilities. This motivates a search for alternatives.

One prominent example is the substitution of MF for MB esti-

mates at parts of the tree, thus obviating the requirement for

full MB search. Doing this judiciously is a substantial meta-

control problem [35–38] that we do not yet know how

to solve. However, such interactions, if understood more sys-

tematically, might provide us with a basis for understanding

various puzzling interactions between MB and MF systems

that appear to be suggested by recent neuroscientific and

behavioural data [39–43].

Here, we consider MB prediction from various algorithmic

angles, discussing key methods and problems. We do not

intend to be computationally, psychologically or neurally com-

prehensive, but instead mostly point to some possibilities that

merit further examination. In §2, we define the problem for

MB prediction in a Markov domain. In §3, we consider short-

cuts of various sorts and their potential origin in learning.

Finally, in §5, we touch on some of the neural implications

and relationships for these notions.
2. Model-based prediction
To begin, we lay out the problem of predicting long-run utility

using a model. To streamline the discussion, we adopt two

formal simplifications. First, much of the recent literature on

MB methods has concerned control—i.e. the choice of trajec-

tories of actions in order to optimize long-run utility [2].

However, many of the critical issues are raised by the simpler

problem of prediction of the long-run utility, and so we initially

focus on this. Second, following much work in reinforcement

learning (RL), we assume that the problem is expressed in

terms of states x that satisfy the Markov property that future

states and rewards are conditionally independent of past

ones, given the current state. In problems where this fails to

hold for the most obvious definition of state, a generic

manoeuvre is to define a (larger) space of auxiliary states that

are Markovian. For instance, a hidden Markov model or a par-

tially observable Markov decision process involves a latent or

hidden state whose rendition in the actual observations is par-

tial or confounded. However, although the observations

therefore fail to satisfy the Markov property, the belief state,

which is the posterior distribution over the latent process

state given the observations, does [44]. In this way, the basic

framework described below also applies to these settings.

Thus, consider an uncontrolled Markov chain over states

x [ X with transition structure Txy ¼ P[x(t) ¼ yjx(t� 1) ¼ x]

and expected reward vector rx ¼ E[R(t)jx(t) ¼ x]. For conveni-

ence, we will consider deterministic rewards; the methods can

be readily extended to the stochastic case. We will assume

that the rewards are bounded.

We take the goal as being to estimate the discounted,

long-run future expected reward starting from each state x

vx ¼ E
X1
t¼0

gtR(t)jx(0) ¼ x

" #
, (2:1)
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where 0 � g , 1 is the discount factor that downweights dis-

tant compared with proximal rewards, and the expectation

is taken over the stochasticity of the transitions. We can expli-

citly expand the expectation as

vx ¼
X1
t¼0

gt
X

y
P[x(t) ¼ yjx(0) ¼ x] ry

 !
, (2:2)

and then, noting that P[x(t) ¼ yjx(0) ¼ x] ¼ T t
xy can be

expressed using the tth power of the transition matrix, we

can derive two simpler forms

vx ¼
X

y
[Ixy þ gTxy þ g2T 2

xy þ � � �] ry (2:3)

and

vx ¼ rx þ g
X

y
Txyvy, (2:4)

where expression (2.4) is a form of consistency condition

between the values of successive states. By constructing vectors

v ¼ {vx} and r ¼ {rx}, we can write equation (2.3) as

v ¼ [I þ gT þ g2T 2 þ . . . ] r (2:5)

and noting the matrix identity that [I þ gT þ g2T 2 þ � � � ] ¼
(I � gT )�1 we can write this as

v ¼ (I � gT )�1r: (2:6)

The vector form of equation (2.4) is

v ¼ rþ gT v: (2:7)

We sometimes write the true value of v as v�. Assume

now that we have estimates T̂ and r̂ of T and r. What

should the estimate be of v*, and how can we actually per-

form the calculations concerned? Although there are other

options, one obvious estimate is v̂� ¼ (I � gT̂ )�1r̂: This is

called the certainty-equivalent value, because it comes from

substituting the estimated values into equation (2.6) as if

they were true. In terms of calculations, the predictions

then also satisfy two simple relationships:

v̂ ¼ r̂þ gT̂ r̂þ g2 T̂ 2
r̂þ � � � (2:8)

which is the approximated vector form of equation (2.5)

v̂ ¼ r̂þ gT̂ v̂ (2:9)

which is the approximated vector form of equation (2.9).

These relationships underpin MB and MF algorithms.

(a) Enumeration and roll-outs
In order to compute values v̂ from an estimated model T̂ and

r̂, equation (2.8) invites us to perform either a deterministic

calculation or stochastic ‘roll-outs’. The deterministic calcu-

lation would realize the steps of the addition in the

equation, up to a finite horizon s by which point gs is suffi-

ciently small relative to the maximal reward. However, this

sort of evaluation mechanism is only credible in the case

that there are very few states.

In the more general case of many, or even an infinite

number of, states, it is possible to use a stochastic sampling

method to focus an approximation v̂x around any state x [45].

One option is the simple Monte Carlo scheme of sampling tra-

jectories from T̂, along with sample rewards r̂, and then

averaging the discounted sum of encountered utilities across

the samples. One distinct advantage of this is that it suffices
to have a ‘black box’ simulator—thus even if there is an infinite

number of states, so that writing down T̂xy is impossible, it

could still be viable to generate sample transitions.

There are two sources of error in such a scheme. The first

is the obvious one of only using a finite number of samples;

this implies that the average will be corrupted by noise whose

standard deviation will decrease with the inverse square root

of the number of samples. The second source of error comes

from the finite truncation of the infinite horizon.

Because this sort of stochastic evaluation is focused on a

particular starting state x, it is not guaranteed to provide

the information necessary to evaluate any other state. The

latter is not an accident—it is actually a fundamental aspect

of this method (called sparse-sampling; [45]). It is, perhaps

surprisingly, possible to evaluate expectations well without

enumerating anything like all the states.

(b) Consistency
The alternative to enumeration, calculation and roll-outs is to

consider equation (2.9) as suggesting a consistency condition

that applies between values of v̂x and v̂y when it is possible

to make a transition from x to y in one step. Inconsistency,

i.e. when the two sides of the equation are not equal, can

be a signature for learning.

One standard technique is Bellman evaluation, which

consists of starting from any v̂(0), and then performing the

iteration which comes directly from the consistency condition

of equation (2.9)

v̂(sþ1) ¼ r̂þ gT̂ v̂(s): (2:10)

Because T̂ is a stochastic matrix, it is possible to show that

this is a contraction (in an L1 norm), in that

max jv̂(sþ1)� v̂�j � gmax jv̂(s)� v̂�j (2:11)

(taking the maximum over the elements of the vectors) which

implies that v̂(s) converges exponentially quickly to the cor-

rect answer [46].

Note that for v̂(0) ¼ 0, this method closely corresponds to

the enumeration scheme from equation (2.8), with each iter-

ation corresponding to one step of the addition. Apart from

skirting explicit computation of powers of the transition

matrix, the recursive evaluation here suggests a different

possibility for sample-based evaluation (based on single tran-

sitions rather than on full trajectories), described next. In

addition, the possibility of initializing the iteration with a

set of values v̂(0) other than zero suggests many possibilities

for using MB evaluation to refine pre-existing estimates, dis-

cussed below in §3.

Replacing v̂x (s) by v̂x (sþ1) ¼ r̂xþ
P

y T̂xy v̂y (s) is usually

called performing a backup, in that information from the

future of state x is used to change the estimated value of

state x itself. Of course, until v̂y (s) is itself correct, the infor-

mation that is being backed up is not completely faithful.

It is in this sense that enforcing consistency is known as a

bootstrapping technique.

One could also imagine simply visiting state x8, then gen-

erating a sample state y8 from T̂x8y and using r̂x8þ v̂y8 (s) as a

sample backup. In this case, it is necessary to average over

multiple samples to overcome the inherent stochasticity,

and so to perform a partial backup

v̂x8 (sþ1) ¼ v̂x8 (s)þ e(s)( r̂x8þg v̂y8 (s)� v̂x8 (s))

v̂x=x8 (sþ1) ¼ v̂x=x8 (s):
(2:12)
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Here, e(s) is a learning rate; the term it multiplies is called

the temporal difference (TD) prediction error [47]. Provided

each state x8 is visited infinitely often, and some other tech-

nical conditions are satisfied, this scheme will converge

appropriately: lim s!1v̂(s) ¼ v̂�. We discuss the MF use of

this rule in §3a.

(c) Roll-outs and consistency
It is possible to combine rollouts and consistency, as in the

original sparse-sampling algorithm [45] and varieties of

Monte Carlo tree search techniques [48]. In a variant that

was really intended for control rather than just for prediction,

one idea is to build a tree-structured representation of the

value of a subset of states progressively, one node (represent-

ing one state’s value) at a time. Evaluation begins at the root

of the tree, which is the current state. Sample transitions move

the state down the tree (with sample rewards also being noted).

Any time a leaf of the current tree is reached, a (curtailed) roll-

out is performed without building any more tree structure; the

rewards and values found are backed up in the existing tree

along the sample path (using a version of equation (2.12)).

Then, a new node is added to the tree at the leaf that has just

been evaluated, and a new evaluation commences from the

root. Under suitable assumptions about the Markov decision

process (MDP), it is possible to bound the expected error

following a certain number of roll-outs.

There are two main advantages of making the tree explicit

and using back-ups, and one main disadvantage. One advan-

tage is that if the actual transition in the world follows one of

the paths in the tree, as is likely given sufficient tree-based

evaluation, then less work needs to be done in the next iter-

ation, because part of the tree will remain relevant. A second

stems from reducing the variance, because the values at inter-

mediate nodes in the tree that are used as part of the back-ups,

have themselves benefited from being averages over a set

of stochastic samples on previous trials. The disadvantage

is that it is necessary to represent the tree, which can be

expensive, at very least in terms of memory.

(d) Discussion
The methods discussed in this section use more or less

expensive calculations to make predictions prospectively

based on r̂ and T̂. Such predictions (and similarly decisions,

in the case of control) conform to the key signature of goal-

directed behaviour [5] that they immediately reflect changes

in either quantity. In particular, consider a new reward

vector r̂0 (e.g. induced by a change from hunger to satiety)

and/or a new transition matrix T̂ 0 (representing different

contingencies, such as a rearranged maze). If a subject were

to learn about such changes, then MB computations based

on the new model would (correctly) change the predicted

values straightaway to the new implied values v̂0. This

change is missed by conventional MF methods.

It is important to be able to quantify the uncertainty about

values such as v̂—in this case depending on a given amount

of enumeration, roll-outs or samples. Although doing so

precisely is extremely demanding in terms both of prior

knowledge about the domain and computation, it is often

possible to bound the uncertainty, given relatively coarse

extra information such as the range of possible rewards and

probabilities. In principle, one would like to exploit this infor-

mation to target future computation more precisely, as a form
of what is known as meta-control [35,37,38]. We discuss this

further in §4.
3. Ameliorating model-based methods
The trouble with the MB evaluation algorithms discussed in

§2 is that they pose severe challenges to computation (by

requiring multiple iterations or roll-outs) and in some cases

additionally to memory (through the size of the tree). This

motivates an examination of alternatives that use estimates

or approximations to simplify or replace the MB calculations.

Two main suggestions have attracted substantial attention:

(i) making and storing direct estimates of the long-run util-

ities of states that can substitute for the complexities of

calculation, and (ii) employing forms of temporal abstraction.

(a) Direct value estimates
It was an early triumphs of artificial intelligence to show that

it is possible to acquire estimates ṽ of the endpoint v̂ (or even

of v� ) of MB calculation directly from experience of action

transitions and rewards without building or searching a

model (hence the MF moniker). This involves enforcing con-

sistency between estimates made at successive states, an idea

from Samuel [8] that led to the TD learning rule of Sutton [47]

mentioned in §2b. It can be seen as substituting actual tran-

sitions and utilities sampled from the environment for the

simulated experience that we discussed as underpinning

various forms of MB evaluation.

That is, the accumulated, discounted sequence of rewards

received following the visit to some state is a sample of its

value, and, like simulated roll-outs, these samples can be

averaged over state visits. In addition, exactly analogous to

the sample backups of equation (2.12), a prediction error

can be computed from any observed state-reward-state pro-

gression, and used to update the estimated value of the

earlier of the states. This is the TD method [47] for online

value estimation. A variant called TD(l) interpolates between

the two extremes of estimating a state’s value in terms of the

full sequence of rewards that follows it, versus bootstrapping

based only on consistency with the immediate reward and

the value of the next state. These sampling methods clearly

have the same convergence guarantees as the corresponding

MB sample methods.

Given that we can produce estimates of values, what can

we do with them? Most obviously, MF quantities ṽ can

replace MB ones v̂ as estimates (or as their policy-maximizing

counterparts for control). Perhaps the more interesting ques-

tion from our perspective here, however, is whether they can

be used in conjunction with the MB schemes in §2, to

improve on the performance of either alone [49]. The main

idea is that they can provide a starting point for iterative

improvement via further MB computation. Thus, for instance,

in the recursive Bellman backup scheme of equation (2.10),

values v̂(0) can be initialized to ṽ, potentially improving the

bootstrapping backups and ultimately speeding convergence,

if these starting points are close to v̂�. Similarly, the iterated

sum from equation (2.8) can proceed progressively through

a series of terms, but then instead of truncating the sum, ter-

minate with the approximate values gs T̂ s
ṽ. Generally, in tree

traversal, estimated values can be substituted so as to treat a

branch like a leaf. Finally, in just the same way, MB methods

using local backups, sample roll-outs or transitions can be
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applied locally to improve the existing estimates at any given

state x.

Such a combination of MF estimates with MB refinement

is motivated by the fact that estimating ṽ from MF experience

is so closely related to some of the methods we discussed for

computing v̂ from a model. That both involve accumulating

samples, though from different sources, makes it seem natur-

al more freely to intermix both sorts of samples, experiential

and model-generated, in updating the same vector. This is the

idea behind the Dyna architecture [50], and since has been

refined to take better advantage of search trees [51,52].

These considerations suggest that it may make sense for

MF learned values and model-derived computed values to

share a single value store, which is both updated online

from experience and subjected to refinement with MB

methods. This store can be seen as caching the conclusions

from experience in the world, expensive MB evaluations,

and also ersatz experience generated from a model.

Viewed this way, the question becomes whether, and at

what states, it is worth spending the computational and

memory costs of MB computation to refine pre-existing

value estimates, and, conversely, whether learning ṽ directly

will permit computational savings relative to purely MB com-

putation, and at what cost. We consider aspects of this in §3c.
(b) Abstraction
A second approach to ameliorating the problems of evaluat-

ing long-run returns involves temporal abstraction. It can

apply to MB and MF evaluation; we describe it first for the

latter in the context of feature-based representations of states.

In §3a we considered a separate MF prediction ~vx for

each state x. However, it is more common to represent the

states using a set of features, and then to realize ṽ as a

linear function of the features. In these representational

schemes, if the value of the yth feature at state x is Xxy,

then we write ~vx ¼
P

y Xxy ~wy, where w̃ are the estimat-

ing weights (that then become the target of TD learning).

Collectively, this makes

ṽ ¼ Xw̃: (3:1)

Consider using as a representation X , an estimate ~M of

(I � gT )�1 [53,54]. Comparing equations (2.6) and (3.1),

it is apparent that if the weights w̃ ¼ r were just the immedi-

ate rewards, then MF predictions would be v�. To put

it another way, in matrix ~M, feature y represents the dis-

counted future occupancy of state y starting from each

initial state. This is therefore called the successor matrix. The

value of state x is a sum over such future occupancies,

each weighted by the immediate reward ry available at the

states involved.

It is straightforward to learn estimates of the immediate

rewards. The successor matrix ~M itself can be estimated

via sampling methods that are exactly analogous to those

for estimating ṽ directly [53]. Recall that each row m̃x of the

matrix represents the expected, discounted cumulative occu-

pancy over all other states, following visit to some state x.

Conversely, each column m̃�,y counts future (discounted)

visits to some successor state y, as a function of different

start states. A column of ~M is thus equivalent to a value func-

tion for a Markov process in which unit reward r ¼ 1 is

earned for each visit to state y, and zero otherwise, defined

by a Bellman equation analogous to equation (2.10). Thus,
in turn, each column of ~M can be learned via either of the

sampling methods in §2 (trajectory or transition based, or

in general, TD(l)), where visits to state y are counted in

place of rewards. In general, TD learning of ~M requires

updating an entire row of the matrix following the transition

from some state x to y, according to the observed transition

(1 for y, 0 elsewhere) plus a vector-valued backup of the dis-

counted occupancies over all other states expected following

y, i.e. gm̃y.

The successor matrix is not only useful for MF evaluation.

Because it summarizes and thus replaces the trees, roll-outs

or iterations over state visits that are required to produce

the MB computations based on equations (2.8) or (2.9), it

can save almost all the computation associated with the

implied algorithms. All that would formally be required is

an MB estimate of the utility of the immediate reward at

each state—a quantity that is in any case part of the model.

The way the successor representation aggregates future

state occupancies is an extreme example of temporal abstrac-

tion. Other related ideas include multiscale temporal

modelling [54] (itself generalized in [55]), which involves

learning a world model corresponding to multiple steps of

the Markov transition dynamics. This comprises powers of

the transition matrix (e.g. T 2 for two steps) and the associ-

ated sums of rewards (rþ gT r). These constitute Markov

chains, as do arbitrary mixtures of them; each represents

views of the same process at different timescales. In the con-

text of MB evaluation, coarser timescale models can allow for

deeper search, in effect by aggregating multiple steps of the

world model together. They can be learned in a similar

manner to the successor matrix.

Similarly, rather than entire transition matrices, individ-

ual sets of state transitions can also be aggregated. This

arises mainly in the control case, where the set of one-step

actions can be augmented by aggregate actions, known as

options, which constitute an extended policy [56,57]. Again,

an option includes both transition and reward models that

aggregate the consequences of the extended action sequence.

Because these pre-compute a chunk of the tree of future states

(and potentially actions), they can be used to take large steps

during ‘saltatory’ MB evaluation [56]. However, whereas the

consequences of following a particular temporally extended

option (in terms of end state and rewards received) are also

easy to learn by essentially the same methods as discussed

so far, the larger problem of option discovery, i.e. finding

a useful set of temporally extended actions, is an area of

substantial current research [11,56].
(c) Trade-offs
All these MB and MF methods enjoy asymptotic optimality

guarantees in terms of computation or experience or both.

However, trade-offs arise pre-asymptotically. Importantly,

error, relative to the true values v�, has two components. One

is due to limitations from evidence, learning or representation:

even when computed exactly, v̂� will generally not coincide

with the true v�, because the former is based on an estimated

model T̂ and r̂, for instance, itself learned from limited experi-

ence with sample transitions and rewards. Such error might be

viewed as irreducible, at least at a given stage of learning. Note

that if the state space is large or continuous, computations

expressed entirely in terms of either MF values or the succes-

sor matrix may have different, and potentially favourable,
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properties, compared with working with models which would

have only to be approximate [46,58,59].

However, value estimates may differ from v̂� further owing

to computational insufficiencies: either from approximate

or inadequate computation in the MB case (e.g. truncating

sums, averaging few samples), or, in the MF case, from noise

inherent in the way that ṽ and ~M were themselves computed

from experience during learning. In particular, as we have

seen, typical methods for learning values or the successor

matrix themselves centre on bootstrapping these quantities

by sample-based updates analogous to equation (2.12). Such

bootstrapping during learning can fall short, for a given

amount of evidence, from reaching the final values v̂� that

could have been obtained had a model been learned from the

same evidence, and then enumerated or rolled out. In this

regime, further refinement of the MF values using MB methods

can improve the estimates.

A source of inaccuracy in MF estimates such as ṽ and ~M
that has been of particular interest in a neuroscience setting

comes from the case of change in the utilities or transitions.

Going back at least to Tolman [16], these manipulations are

designed to allow the subject to update the world model

(either r̂ or T̂ ) while not giving them experience that would

allow standard learning rules to update MF values ṽ or, in

some experiments, the accumulated transition information

inside ~M. Under such an experiment, the MF values are

biased towards estimates of the old values v instead of the

new values v0. Additional computation with the (correct)

model could correct this bias.

In particular, insofar as these techniques blend MB evalu-

ation with pre-computed steps, they might or might not pass

as MB in the standard laboratory tests. For instance, predic-

tions based on the successor matrix could adjust to new

reward contingencies immediately, if the estimates of r in

ṽ ¼ ~Mr are replaced by r‘. This would not be the case for

weights learned to an arbitrary feature matrix X . Further-

more, it would apply only to manipulations of reward

values; changes in the transition contingencies that would

alter ~M would still lead to errors if the successor matrix

were not itself relearned. Thus, behaviour produced by the

successor representation is not truly goal-directed, under

the strict definition [60] of being sensitive to both the

action–outcome contingency (T̂ ) and the outcome value (r̂):

it would pass laboratory tests for the second, but not the

first, owing to the way ~M summarizes the aggregated long-

run transitions. Similarly, whether values computed from

multi-timescale models or options are able to immediately

adjust to reward or transition changes would depend on

whether or not these reflect rewards or transitions that are

already cached inside their pre-computed aggregates (or,

potentially, whether or not the way that the cached quantities

might have changed since they were learned can be predicted

or is known). The fact that temporally extended options, for

instance, contain a model of their aggregate reward conse-

quences, is the basis for a suggestion [10,11] that such

action chunking (rather than classical MF value learning)

might give rise to the experimental phenomena of habits.

As for whether, or at what states, to target additional

computation, one view is that this depends on assessing the

uncertainty and/or bias in the existing value estimates,

which generally can be done only approximately [61–63].

Locally, this involves tracking uncertainty about the rewards

or transitions both by taking account of what has been
observed about them and how they are likely to have chan-

ged. The challenge here is that the values at different states

are coupled to one another through the transitions, so local-

ized uncertainty or change in the model at any particular

state has effects on the value (and uncertainty about the

value) at many other states antecedent to it via correlations

that it is too expensive to maintain. Heuristics, like prioritized

sweeping [64], target MB updates towards states likely to

have been affected by recently learned examples.

In theorizing about biological RL [4,32,33], information

about uncertainty has been proposed to explain, for example,

why in experiments, animals favour MB computation early

in training (when bootstrapped values are uncertain and

there is likely value to MB computation), but MF values dom-

inate following over-training on a stable task (when there is

little uncertainty in any case) [65].
(d) Control
As mentioned in §2, we have so far concentrated on predic-

tion rather than control. Control is typically modelled by a

Markov decision process in which the agent chooses an

action at each state and the successor state depends jointly

on the state and action. The critical extra complexity of con-

trol is that the policy (which is the mapping from states to

possible actions) of the agent has to be optimized during

learning. Applying any particular policy reduces a Markov

decision process back to a Markov chain, by inducing a

policy-dependent state–state transition matrix T of the sort

considered in §2. This implies that the values v (and also

the state–action version of the values, known as Q values;

[66]) both depend on the policy—more directly, because the

value of a state depends in part on the actions taken at all

subsequent states. An optimal policy is defined as one that

jointly maximizes value at all the states.

The requirement for control leads to the extra problem of

exploration versus exploitation [35,48,67]. That is, to the

extent that uncertainty can be measured, the value of redu-

cing it can be quantified, again at least approximately, in

terms of obtained reward. This is because, in the case of con-

trol (i.e. if the values are actually used to make choices), more

accurate predictions can earn more reward via producing

better choices, though only to the extent the value estimates

were unreliable in the first place. In this way, improving

uncertain estimates can justify choosing actions that may

reveal new information. The same trade-off also governs to

what extent it is worth spending computational resources

refining existing value estimates via MB evaluation.

The relationship between a Markov decision process and

a Markov chain implies that most of the algorithmic methods

can be adapted to control. For instance, there is a maximizing

variant of the consistency condition in equation (2.9) that

leads to a maximizing variant of the MB tree backup [68]

and of MF value learning [66], both of which produce the

value function associated with the optimal policy. While it

is possible to define an analogous optimal successor rep-

resentation (the successor matrix induced by the optimal

policy), this cannot be learned in a simple MF way, separate

from the optimal values. Instead, the successor representation

and multi-timescale models fit more naturally with a differ-

ent family of control approaches, which include policy

iteration in the MB case and the actor–critic for MF learning

[9,59]. These work by adopting some candidate policy,
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learning its associated value function and using these values

to improve the policy.

The issue of policy dependence also plays an important

role in Monte Carlo tree search, because the tree being

rolled out depends on the assumed policy, which is also

what the tree search is optimizing. There is a Monte Carlo

tree search mechanism that tries out different actions accord-

ing to a measure of their likely worth, but taking the potential

benefits of exploration into account [48]. It distinguishes

between an (approximately) optimal policy that is being cap-

tured by the parts of the tree that have already been built, and

a roll-out policy which is a default that is applied at so-far-

unexpanded leaves of the tree, and which is almost always

suboptimal but provably sufficient for this purpose. For the

case of prediction alone the roll-out policy is, in effect, what

it is sought to evaluate, and so the prediction tree could

have been built more aggressively, adding more than just a

single node per step at the root.

With respect to MF methods, we have seen that caching

quantities that depend on the rewards and transitions

inside a value function ṽ, the successor matrix ~M or other

temporally extended representations can cause characteristic

errors in prediction when the model changes. The fact that

these quantities are both also policy-dependent (and also

that the policy itself is cached in methods like the actor–

critic) is another similar source of error. Thus, if the policy

changes at a state, this should typically induce value and

policy changes at other states. However, MF methods may

not update these all consistently. Notably, although in the

prediction case we suggested that the successor represen-

tation behaves like MB reinforcement learning with respect

to changes in the rewards r, though not the contingencies

T , in the full control case, the successor representation may

also fail to adjust properly to some changes in rewards

alone. This is because in the control case, changes in rewards

r can induce changes in the optimal policy, which in turn

affect the effective transition matrix, T, making it different

from the one cached inside ~M.
4. Neural realizations
We have discussed a number of variants of MB computation,

focusing on the case of the prediction of long-run utility. We

suggested that in problems of realistic size, MB methods are

unlikely to be able to function in isolation, but might instead

fall back on MF estimates, at least to some extent. Prediction

learning is central to Pavlovian or classical conditioning, for

which actions are elicited purely accordance with the pre-

dictions rather than because of their contingent effects on

the outcomes. However, MB and MF computational issues

also arise for the more significant case of instrumental or

operant conditioning, in which it is necessary and possible

to optimize the choice of actions to maximize rewards and

minimize punishments. Indeed, most psychological and

neuroscience studies of the two sorts of methods have been

conducted in the instrumental case.

Substantial data distinguishing MB and MF instrument-

al control have come from brain lesion experiments in the

face of a reward devaluation probe. Collectively, these

appear to demonstrate a reasonably clean double dissoci-

ation between two different networks supporting MB and

MF control, such that animals reliably behave in one or
other fashion given lesions to specific, different, areas. Instru-

mental MB and MF behaviour appear to be centred on

distinct areas of striatum: dorsomedial and dorsolateral,

respectively [22,27,69–71]. Areas of striatum are intercon-

nected with associated regions of cortex via topographic

‘loops’ linking the two structures, via additional basal

ganglia nuclei and the thalamus [72–74]. At least in the

case of MB behaviour, lesions implicate the entire loop,

cortical (prelimbic) and thalamic (mediodorsal) regions

affecting MB control [23,75,76]. There is also a key role for

the orbitofrontal cortex in the flexible assessment of outcome

worth that is essential for MB evaluation [24–26,77]. By con-

trast, cortical and thalamic elements of a hypothetical parallel

MF loop through dorsolateral striatum have yet to be demon-

strated. Although the results are less clean cut, neuroimaging

in humans has revealed potential counterparts to some of

these areas [29–31,69,78,79].

A third subregion of striatum, the ventral part (also known

as nucleus accumbens) is more closely associated with

Pavlovian rather than instrumental aspects of behaviour (e.g.

prediction rather than control). It is well connected with

parts of the amygdala, and also the orbitofrontal cortex,

which are also implicated in Pavlovian behaviour. Important-

ly, as we discussed, predictions (as embodied in various

Pavlovian behaviours) may themselves, in principle, be com-

puted in either an MB or MF fashion. This distinction has

not been nearly as carefully worked out behaviourally or com-

putationally in the Pavlovian case [80]. Nevertheless, there

does appear to be some behavioural and neural dissociation

between MB- and MF-like Pavlovian behaviours, with the

shell region of the accumbens, orbitofrontal cortex and

the basolateral nucleus of the amygdala supporting the

former (such as specific Pavlovian–instrumental transfer and

identity unblocking), and the core of the accumbens and the

central nucleus of the amygdala supporting the latter (general

Pavlovian instrumental transfer) [22,27,81].

Further, the predictions that feed into Pavlovian actions,

whether MB or MF, may also affect instrumental actions,

though it is not yet clear exactly how or to what extent. Ventral

areas of striatum may be implicated in the performance, if not

the acquisition, of instrumental behaviour, consistent with an

important role of Pavlovian processes in motivation and regu-

lation of behavioural vigour in Pavlovian to instrumental

transfer paradigms [5,82–85]. Perhaps for a similar reason,

infralimbic cortex (which is more associated with ventral stria-

tum than with dorsolateral) is also involved in habitual

instrumental behaviour [23]. In addition, recent results with

disconnection lesions suggest that the basolateral and central

nuclei of the amygdala, in communication with dorsomedial

and dorsolateral striatum, are required for acquiring MB and

MF instrumental behaviours, respectively [86,87].

Collectively, these results are evidence for the mutual

independence and disjoint neural realizations of these two

sorts of valuation and control. This makes it hard to see

how both MB and MF behaviours could be supported by a

single, shared value store, as in the most literal implementa-

tion of Dyna-like schemes that we discussed in §2a.

However, the apparent independence under insult does not

rule out the possibility that they interact in the intact brain.

Indeed, results from human imaging experiments suggest

that the reward prediction errors that are thought to drive

online MF learning, are themselves sensitive to MB values

[14,39]. This may reflect an MB system training or refining
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MF values, as in some of the various methods discussed in §3a.

Behavioural results in humans, from tasks involving the com-

bination of instructed and experienced values [40] and those

involving retrospective revaluation [42], may also be consistent

with the possibility that the MF system is trained by the

MB one.

We have also seen various ways in which MB learning

and evaluation can be conducted, via samples, using tech-

niques entirely parallel to the temporal-difference methods

most associated with MF learning. There is a fairly well-

accepted neural mechanism for performing appetitive MF

learning in which the phasic activity of dopamine neurons

conveys a TD prediction error to its targets, particularly

affecting activity and plasticity at corticostriatal synapses

[19–21,88]. It is tempting to suggest that, whether operating

on the same synapses (as in Dyna [50]) or on parallel ones

in, say, adjacent corticostriatal loops, samples of simulated

experience from an MB system could use exactly the same

mechanism to update values, leveraging or perhaps replicat-

ing, the brain’s MF circuitry in the service of MB evaluation.

The sample trajectories themselves might be produced by

mechanisms such as the replay or pre-play of patterns of

hippocampal activity expressing recent or possible paths

through an environment [89–92], which is known to be

coordinated with cortical and striatal activity [93,94].

We noted in §3c,d that the successor matrix used as a state

representation for an MF scheme can adjust immediately to

changes in reward contingencies (if predictions are based

on ~Mr0 rather than on ~Mr) though not changes in transitions

(which require an alteration to ~M which can only happen in

an MF manner through suitable new real or simulated experi-

ence). This can be seen as exploiting TD learning to produce

an MF method with some of the features of MB control. Other

state representations might also afford useful generalizations,

sharing the fruits of learning about one set of states with

other sets. Unfortunately, we know rather little about the

nature and evolution of cortical representations of states

that underpin MF (and MB) predictions, although it is

widely believed that these representations do capture and

represent explicitly statistical regularities and predictabilities

in their input [95–97]. It is indeed a popular notion that

the cortex builds a sophisticated representation of the

environment that should then afford efficient, hierarchical,

MB and/or MF control, and indeed appropriate generaliz-

ation between related tasks and subtasks. How this works

is presently quite unclear.

All of these schemes, from Dyna to the successor represen-

tation, that repurpose the MF prediction error to serve MB ends

predict dopaminergic involvement in both sorts of valuation.

It is reasonably well demonstrated that dopamine does

indeed affect MF learning [98–100]; however, there is as yet

only mixed evidence for the relationship between dopamine

and MB learning [31,43,80,101,102].

Finally, we note the new meta-control problem that has

arisen from the need to arbitrate and integrate the multiple

methods for making predictions and decisions that we have

been discussing [36,103]. One approach to this that has

been particularly prominent in the case of the control of

working memory (in order to create the sort of history rep-

resentation that turns a partially observable Markov

decision problem into the sort of standard Markovian one

we have considered here) is to treat the meta-control

decisions as being just like external decisions. This would
be realized by the same underlying circuitry (albeit poten-

tially different regions of structures such as the striatum

and the cortex) [104–110]. Of course, the potential regress

to meta–meta-control problems and beyond needs to be

avoided. Such approaches are tied to considerations about

what makes meta-control choices appropriate or optimal;

new ideas are emerging about this, notably the relationship

to various cognitive limitations [111,112].
5. Discussion
From at least the time of Tolman [16], the advantages of MB

reasoning have been clear. It offers subjects statistical effi-

ciency and flexibility, i.e. an ability to deploy their latest

knowledge in the service of their current goals. There are

limitations in this flexibility. It turns out, for instance, to be

very difficult for us (though not necessarily scrub-jays [113])

to make MB predictions about motivational or emotional

states that we do not currently inhabit [114]. More significant

though, and interpretable as a point of attack from the very

outset [115], are its computational demands. The trees of

future states (and actions) grow most rapidly in even moder-

ate-sized domains, overwhelming the working memory and

calculation capacity of subjects. Hierarchical approaches

[116,117] are important, but pose their own challenges of

provenance and inference.

We therefore reviewed alternative, MF, methods of

reasoning, which operate retrospectively based on experience

with utilities. Canonical versions of these are less flexible than

MB methods because they rely on explicit experience to

change their assessments; their use can thus be distinguished

from that of MB systems when behaviour fails to change

when aspects of the world change. There are various sugges-

tions for how MF values might come to substitute fully [4,32]

or partially [33] for MB values, as in habitization [5]. For

instance, the relative certainties of the two systems might be

weighed with control favouring the less uncertain [4]. Alter-

natively, the value of the potential information that could be

gained by performing MB calculations could be assessed and

weighed against the opportunity and/or cognitive cost of the

MB calculation [32,33]. Certainly, there is much current

emphasis in human and animal studies on finding ways of

elucidating the differential engagement of the systems

[12,14,28,31,39,118].

We focused on the methods of MB calculation, and the

ways that MF values or MF evaluation methods might be

embedded in the MB system and that MB behaviour can

arise from purportedly MF systems. We saw very close paral-

lels between various versions of each, for instance between

methods that explore the MB tree using stochastic simulations

in the model versus methods that learn MF values from

sampled experience in the world. Indeed, there are many

points on the spectrum between MB and MF that current

tasks only dimly illuminate [12].

One possibility invited by these refined interactions

between MB and MF systems is to consider MB evaluation at

a much finer grain. We can envisage a modest set of operations:

such things as creating in working memory a node in a search

tree; populating it with an initial MF estimate; sampling one or

more steps in the tree using a model; backing value information

up in the current tree, possibly improving an MF estimate using

the resulting model-influenced (though not necessarily purely
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MB) prediction error and finally picking an external action.

These fine-grain choices lead to various internal (cognitive)

or opportunity costs [32,33,119,120], and are plausibly the sol-

ution to a meta-control problem (i.e. concerning the

approximately optimal control of control) [36,103,112]. This

meta-control problem, which itself could have MB and MF

elements to its solution, and presumably depends on learning

over multiple tasks, is an important focus for future study.

Finally, many precursors of modern ideas about MB

and MF planning were early concerns in the first days of

the field of artificial intelligence, and grounded a tradition

of experimental work in psychology. Some of these ideas

underpin the techniques in reinforcement learning that

we have been discussing [8,121,122]. Much computation-

al research considered heuristics for tractably building,

searching and pruning decision trees, and the use of value

functions to assess intermediate position [123–126], to

name but a few. In psychology, such algorithms were

adopted as models of human behaviour in chess and other

planning problems such as the towers of Hanoi or mission-

aries and cannibals [126–128]. Error rates, reaction times

and self-reports in ‘think-aloud’ planning all appear to

suggest the usage of particular heuristics to guide decision

tree search.
The direct applicability of these search heuristics to com-

puting expected future values in the RL setting is unclear,

however, because the methods we have talked about address

what can be seen as a wider class of decision problems than

chess or the other planning tasks, involving such additional

complications as computing expected returns with respect

to stochastic transitions (and potentially rewards) and inter-

mediate rewards along trajectories. Nevertheless, heuristic

decision tree pruning has recently arisen as an important fea-

ture of human behaviour also in modern RL tasks [129], and

other insights from this earlier work are starting to permeate

modern notions of hierarchical control [56]. It thus seems a

ripe time to revisit these models and results, and attempt to

understand how they can be made to relate to the theoretical

and experimental phenomena reviewed here.
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