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Our perceptions result from the brain’s ability to make inferences, or predictive models, of sensory information. Recently, it
has been proposed that psychotic traits may be linked to impaired predictive processes. Here, we examine the brain dynamics
underlying statistical learning and inference in stable and volatile environments, in a population of healthy human individu-
als (N= 75; 36 males, 39 females) with a range of psychotic-like experiences. We measured prediction error responses to
sound sequences with electroencephalography, gauged sensory inference explicitly by behaviorally recording sensory statistical
learning errors, and used dynamic causal modeling to tap into the underlying neural circuitry. We discuss the findings that
were robust to replication across the two experiments (Discovery dataset, N= 31; Validation dataset, N= 44). First, we found
that during stable conditions, participants demonstrated greater precision in their predictive model, reflected in a larger pre-
diction error response to unexpected sounds, and decreased statistical learning errors. Moreover, individuals with attenuated
prediction errors in stable conditions were found to make greater incorrect predictions about sensory information. Critically,
we show that greater errors in statistical learning and inference are related to increased psychotic-like experiences. These
findings link neurophysiology to behavior during statistical learning and prediction formation, as well as providing further
evidence for the idea of a continuum of psychosis in the healthy, nonclinical population.
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Significance Statement

While perceiving the world, we make inferences by learning the statistics present in the sensory environment. It has been
argued that psychosis may emerge because of a failure to learn sensory statistics, resulting in an impaired representation of
the world. Recently, it has been proposed that psychosis exists on a continuum; however, there is conflicting evidence on
whether sensory learning deficits align on the nonclinical end of the psychosis continuum. We found that statistical learning
of sensory events is associated with the magnitude of mismatch negativity and, critically, is impaired in healthy people who
report more psychotic-like experiences. We replicated these findings in an independent sample, demonstrating strengthened
credibility to support the continuum of psychosis that extends into the nonclinical population.

Introduction
Sensory perception is facilitated by prior beliefs about what is
likely to happen next (Sherman et al., 2015). By estimating the
probability of events given the history, we can form a predictive

model about the world. When circumstances are “volatile,”
such that previously learned regularities change, it is advan-
tageous to form more flexible predictive models (Mathys et
al., 2011). Indeed, previous literature has shown that healthy
individuals are able to estimate environmental volatility
(Behrens et al., 2007), adopting a greater learning rate in the
face of ever changing, volatile circumstances. This motivates
exploratory behavior and continuous updating, as well as
suppressing of top-down prior beliefs (Angela and Dayan,
2002).

The state of constant learning is inefficient as a long-term
strategy in environments that are stable (Schwartenbeck et al.,
2013). In a stable environment, sensory information varies
less. Consequently, the precision (mathematically speaking, the
inverse of variance) of prior beliefs is greater, and these beliefs
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thereby influence perception more strongly. This greater reliance
on prior beliefs reduces the cognitive demands associated with
perception (Vossel et al., 2014). In these environments, healthy
individuals form precise predictions about forthcoming sensory
stimuli, and their brains consequently produce large prediction
error (PE) responses to events that violate such predictions
(Wacongne et al., 2012).

A sensory PE response is commonly gauged using electroen-
cephalography (EEG) and an auditory oddball paradigm
(Squires et al., 1975), in which surprising sounds are embedded
in a sequence of predictable sounds. Within this paradigm, the
predictable sounds (standards) are subtracted from the surpris-
ing sounds (deviants) to obtain the mismatch negativity (MMN)
event-related potential (ERP), which is interpreted as the neural
manifestation of a failure to suppress a PE (Garrido et al., 2009a).
The PE response more generally refers to the difference between
deviants and standards, whereas ERP components, such as the
MMN, refer to a specific peak/time window. PE responses are
thought to signify implicit sensory learning ability: an individu-
al’s accuracy in their inherent learning of the statistics of sensory
events (Lecaignard et al., 2015; Southwell and Chait, 2018).
However, it has not as yet been addressed whether MMN scales
with the accuracy in statistical learning and inference.

Emerging theoretical accounts of psychosis postulate that psy-
chotic experiences arise because of an impairment in the predic-
tive ability of the brain to infer the causes of internal and
external sensations (Adams et al., 2016; Sterzer et al., 2018). The
most robust and replicable empirical evidence for this is from
findings of attenuated PE responses in psychosis (Adams et al.,
2013; Näätänen et al., 2015). Alterations in the neurophysiology
of PEs have been shown to increase as psychotic traits increase,
suggesting that the degree of PE attenuation aligns on a contin-
uum of psychosis (Randeniya et al., 2018). The psychosis contin-
uum comprises the full spectrum of psychotic experiences, from
healthy individuals who report psychotic-like experiences to
those with florid psychosis at the very end of the spectrum (van
Os and Reininghaus, 2016). In this study, we zoom in to the non-
clinical population, as there is conflicting evidence about whether
PEs are also reduced on the healthy end of the continuum
(Broyd et al., 2016; Oestreich et al., 2019).

The aims of this study were to examine the relationship
among statistical learning behavior, sensory PEs, the ability of
the brain to attune to volatility, and to investigate whether aber-
rations in these are aligned on the nonclinical continuum of psy-
chosis. In response to the current replication crisis in the field,
we sought to corroborate our findings in an independent sample.
In so doing, we hoped to assess the robustness of our initial find-
ings, using the same methodology in an unbiased manner. In
other words, we ensured that both preprocessing and analysis
choices were not biased by the original findings. To this end, we
report the findings side-by-side for both datasets and discuss the
implications of the replicated findings.

Materials and Methods
Participants
The total sample from both the Discovery and Validation study included
75 healthy adults. The Discovery study included 31 participants (age
range, 19–38 years; mean age, 24.65 years; SD= 4.85; 14 males and 17
females), and the Validation study included 44 participants (age range,
18–39 years; mean age, 24.27 years; SD=5.13; 22 males and 22 females).
For the Discovery study, a power analysis was performed (R software:
“pwr.r.test” function), yielding a sample size of N=28 for 80% power to
observe moderate effects at a = 0.05, two-sided. Moderate effect sizes

have been reported in a previous study investigating auditory oddball
ERP correlates of schizotypal perceptual alterations (Jang and Kim,
2014; Sumich et al., 2014). For the Validation study, we decided to
increase our power to 95%, which yielded a sample size of N=45 to
observe a moderate effect at a = 0.05, two-sided. We did collect 45 par-
ticipants originally; however, one of these participants reported that the
sounds in the task had intermittently stopped playing, so we removed
them from all of the final analyses.

All participants were recruited through the Psychology Research
Participation Scheme (SONA Database), an online newsletter to staff
and students across the University of Queensland and Gumtree. Prior
screening confirmed that all participants did not have a history of psy-
chiatric or neurologic disorders, and were not currently taking medica-
tion or using any illicit drugs. The highest level of education, smoking
habits, and alcohol consumption were recorded. Participants also com-
pleted the 92-item Prodromal Questionnaire (PQ), which measures posi-
tive and negative symptoms and is typically used to assess psychotic
experiences in healthy individuals (Loewy et al., 2005). For further infor-
mation on the demographics of the sample and the PQ scores per partic-
ipant, as well as the positive and negative symptom frequencies, please
see Table 1 and Figure 1. Participants provided written informed consent
for taking part in our study after reading and understanding the infor-
mation sheet, which included a full description of the study and proce-
dure. Participants received monetary reimbursement for their time.
Participant recruitment and data collection for the Discovery and
Validation samples were conducted by independent researchers in the
same laboratory using the same methodology. This research was
approved by the University of Queensland Human Research Ethics
Committee.

Experimental design
Reversal oddball task. An auditory “duration” oddball paradigm was
modified so that the probability of different sounds varying in duration
was either stable or volatile (adapted fromWeber et al., 2018). In a stable
experimental block, a particular sound was always more likely than
another sound (e.g., short sounds had 80% probability, long sounds had
20% probability, and vice versa). In volatile experimental blocks, a par-
ticular sound, which was more likely at first, was then less likely, with
three reversals of probability in each block. The Reversal oddball task is
represented in Figure 2.

Auditory stimuli and design. The Reversal oddball paradigm con-
sisted of 2000 pure tones played over eight experimental blocks (2 min 8
s each; four stable and four volatile blocks). The tones varied in duration
such that short tones lasted 50ms and long tones lasted 100ms. All tones
had an identical frequency of 500Hz and smooth rise and fall periods of
5ms. The tones were presented in a pseudorandom order, with each pre-
sentation of five tones including a deviant tone in a randomly assigned
position; the deviant tones were always separated by at least one stand-
ard tone. The tones were delivered binaurally via insert earphones for
;2min every 500ms. Sound intensity was kept constant between partic-
ipants at a comfortable level. The short sounds (50ms) and long sounds
(100ms) were both played 1000 times each throughout the experiment.
In the entire experiment, we had the following: two stable blocks in

Table 1. Demographic information

Discovery dataset Validation dataset

p valueMean SD Min Max Mean SD Min Max

Age (years) 24.65 4.85 19 38 24.27 5.13 18 39 0.75
Education (years) 14.29 2.05 12 19 15.66 3.07 12 25 0.034
English (years of speaking) 19.68 8.88 4 37 19.19 6.90 5 37 0.79
PQ score 3.76 1.21 0.69 5.73 4.09 0.80 2.20 5.57 0.19

Male Female Male Female
Sex 14 17 22 22 0.68

Right Left Right Left
Handedness 26 5 39 4 0.38

Max, Maximum; Min, minimum. PQ Psychotic experience scores are log transformed. Missing information
from one Validation study participant for education, English, and handedness.
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which the short sound was more probable (at 80%); two stable blocks in
which the long sound was more probable (at 80%); and four volatile
blocks in which each block had two times where the short sounds were
more probable (at 80%) and also two times where the long sounds were
more probable (at 80%). The order of stable and volatile blocks was
counterbalanced across participants.

Procedure. During the Reversal oddball task, participants were seated
on a comfortable chair in front of a desk and computer screen, in a dimly
lit Faraday cage testing room. Before the experiment, the participants
were familiarized with the different sound types and trained with two
short practice runs of the task. Participants were asked not to move while

the sounds were played and to look at a fixation cross at the center of the
screen. The participants were instructed to pay attention to the sounds
to judge the probability of the more likely sound and rate their confi-
dence on this judgment. Probability was rated on a scale (Fig. 2); the left
end of the scale represents 100% short sounds and the right end of the
scale represents 100% long sounds. Confidence in probability estimation
was on a scale of 1 = not confident, 2 =moderately confident, and
3= very confident. Participants were required to make these estimates
every 2 min and 8 s using a computer keyboard and a mouse. The total
duration of the Reversal oddball task was ;20min (including short
breaks).

Figure 1. PQ scores for Discovery and Validation samples. A, Frequency of a subset of positive psychotic experiences (purple to orange) and negative psychotic experiences (blue to green).
B, Frequency of psychotic experiences, displaying positive psychotic experiences (purple to orange) and negative psychotic experiences (blue to green). C, PQ scores weighted by frequency, dis-
playing total PQ weighted scores (gray), negative weighted scores (green), and positive weighted scores (orange). D, Log-transformed PQ-weighted scores.
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EEG recording and preprocessing. A BioSemi Active Two System
recorded continuous EEG data from 64 scalp electrodes at a sampling
rate of 1024Hz. Electrodes were arranged according to the international
10–20 system for electrode placement (Oostenveld and Praamstra,
2001). Standard preprocessing and data analysis were performed with
SPM12 (http://www.fil.ion.ucl.ac.uk/spm/). Data were referenced to
standard BioSemi reference electrodes, downsampled to 200Hz and
high-pass filtered at 0.5Hz using the Butterworth filter. Eye blinks were
detected and marked using the VEOG (vertical EOG) channel at an eye-
blink threshold of 4; the Berg method was used to correct for eye blinks.
The data were epoched offline with a peristimulus window of �100 to
400ms. Further artifact rejection was performed by thresholding all
channels at 100 mV, robustly averaging across trials, applying a low-pass
Butterworth filter of 40Hz, and baseline correcting between �100 and
0ms. We analyzed event-related potentials from the onset of standard
and oddball tones separately for stable and volatile conditions.

Statistical analysis
In the current study, we used both frequentist and Bayesian approaches to
our analyses. The Bayesian analyses were conducted using the JASP package
(https://jasp-stats.org/). The frequentist analyses were conducted using the
SPSS package (2012 version; IBM); multiple correlations were corrected
using the method of Sidak (1967). In the Validation study, we excluded
two participants in the neuroimaging analyses because of EEG trigger fail-
ure and high impendence (more than 650 V). Further, one participant
was removed from the ERP analyses, and one participant from the PQ
analyses, as they were an outlier (z score, greater than63).

Bayesian approach. Bayes factors are based on Bayes’ rule, displayed in
the equation below. The posterior probability, given the observed data (the
posterior; p(H1|data)/p(H0|data)), equals the prior odds [the odds of the null
and alternative hypotheses (p(H1)/p(H0)) before the data are observed],
multiplied by the Bayes factor (p(data|H1)/p(data|H0)), or the change
(update) from before the posterior (Wagenmakers et al., 2017), as follows:

p H1jdatað Þ
p H0jdatað Þ
|{z}

The Posterior

¼ p H1ð Þ
p H0ð Þ
|{z}

The Prior

¼ p datajH1ð Þ
p datajH0ð Þ
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Bayes factor BF10

:

The subscript “10” in BF10 indicates that in the equation H1 (the al-
ternative hypothesis) is in the numerator and H0 (the null hypothesis) is

in the denominator, and subscript “01” indicates the reverse. In the cur-
rent study, Bayesian factors were computed using BF10, which indicates
testing the alternative hypothesis over null hypothesis. We report on
BF�0 and BF10, which indicate that the alternative hypothesis specifies
that the correlation is either negative (�0) or positive (10; Gronau et al.,
2020).

We conducted single-channel ERP, whole-channel spatiotemporal,
source-level, and effective connectivity analyses to assess the effect of
environment (stable vs volatile) on neuronal activity. In addition, we
conducted behavioral analyses to investigate statistical learning in the
different volatility contexts, and its associations with psychotic-like expe-
riences and neural dynamics. We have described these analyses in more
detail below.

Single-channel analysis. We conducted a full factorial 2� 2 within-
subjects ANOVA design on mean ERP values, with Environment (stable
and volatile) and MMN (Standard and Deviant) as factors. Mean ERP
values were obtained by identifying the maximum amplitude across the
preselected time window of interest, which is typical for MMN latency,
as follows: 150–250ms, over a frontocentral channel (Fz) in which
MMN responses are typically seen in oddball paradigms (Todd et al.,
2008). We contrasted evoked responses to deviant and standard sounds,
under stable and volatile conditions. Significant interactions were further
analyzed using paired t tests.

Behavioral analysis. We conducted paired t tests on mean statistical
learning errors and mean confidence scores in stable versus volatile con-
ditions. This was done to assess the effect of environment (stable vs vola-
tile) on statistical learning and confidence in estimating probabilities.
Statistical learning errors are here defined as the absolute percentage
errors in probability estimation; that is, the difference between the par-
ticipants’ probability estimation of the more likely sound and the actual
probability of the more likely sound. Thus, higher statistical learning
error values reflect less accurate statistical learning. Next, we computed
Pearson’s and Bayesian correlations to assess the associations among
psychotic experience, statistical learning errors, and MMN in stable and
volatile conditions.

Spatiotemporal maps and source reconstruction. Three-dimensional
spatiotemporal images were generated from averaged ERP data for each
participant and condition. A two-dimensional matrix corresponding to
the scalp electrode space was produced for each time bin from 0 to
400ms in steps of 5ms. The images were assembled according to their
peristimulus temporal order, which resulted in a three-dimensional spa-
tiotemporal image (32� 32� 81) per participant. These images were
then smoothed at a full-width at half-maximum of 12� 12� 20ms. In
addition, we performed source reconstruction of the spatiotemporal
image volumes to make inferences about the cortical regions that gener-
ated the scalp data. We coregistered the sensor data with a single sphere
head model to obtain the source estimates on the individuals’ cortical
mesh. Next, we conducted forward computations of the effect each
dipole on the cortical mesh has on the sensors. Finally, we inverted the
forward computations with the multiple sparse priors algorithm under
group constraints (Friston et al., 2008; Litvak and Friston, 2008); these
inverse reconstructions were summarized as images (smoothed at 8
mm3) for each of the four conditions in every participant.

For both spatiotemporal and source level analyses, data were ana-
lyzed using a mass univariate general linear model method. We con-
ducted a full factorial analysis using the following factors: Environment
(stable and volatile) and PE (Standards and Deviants). We computed
contrast images for main effects, interactions, and t tests to gauge the dif-
ferential effect between deviants and standards during stable and volatile
conditions. In addition, we conducted multiple regression analyses
with statistical learning error as the predictor and activity at the
scalp and source level as the outcomes. Age was added into all mod-
els as a covariate, since attenuation in PE response occurs with age
(Kiang et al., 2009). The order of volatile and stable conditions was
also included as a covariate as it has been shown to influence PE
responses (Todd et al., 2011, 2014). Finally, psychotic experience
was added as a covariate to exclude any potential differences in vola-
tile and stable conditions because of psychotic symptoms. All statis-
tical maps are reported at a threshold of p, 0.05 familywise error

Figure 2. Reversal oddball task. A schematic diagram showing an example of an experi-
mental run. The order of the blocks in an experimental run was counterbalanced between
participants. In the first stable block depicted here, the short sound (50 ms) was more proba-
ble (80%) throughout, whereas in the first volatile block the long sound (100ms) was more
probable at first, then the short sound was more probable, with three reversals (vertical
lines) of probability in total in each volatile block. Participants were asked to listen to the
sounds and estimate the probability (top Q) of the most frequent sound and rate their confi-
dence on this judgment every 2 min and 8 s.
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(FWE) corrected for multiple comparisons for the spatiotemporal
peak/volume or source region. We used the Porthole and Stormcloud
toolbox from Taylor and Garrido (2020) to display the spatiotemporal fig-
ures and videos found in the Movie 1, Movie 2, Movie 3.

Dynamic causal modeling.Dynamic causal modeling (DCM) was used,
which, similar to source reconstruction, also uses a spatial forward model.
However, in addition to this, DCM incorporates a biologically informed

temporal forward model, which places empirically derived constraints on
the inversion and allows inferences about the source connectivity (Kiebel et
al., 2009).

In the model specification, we defined the brain architecture based
on previous robust findings (Opitz et al., 2002; Garrido et al., 2007),
demonstrating that a three-level hierarchical brain model underlies the
generation of PE responses evoked in auditory oddball paradigms. This

Figure 3. Prediction errors relate to statistical learning ability, indicating a precise prediction model in stable conditions. A, Significant interaction between volatility (stable – blue vs volatile –
orange) and MMN. B, Significant main effect of MMN, showing brain responses evoked by standards (green and red) and deviants (purple and yellow) in the context of stable and volatile conditions.
C, Fewer statistical learning errors and greater confidence in stable (blue) than volatile (orange) conditions. The plots show individual data points, density plots and boxplots. D, Significant correlation
between statistical learning errors and MMN in stable conditions. SS, Stable standard; SD, stable deviant; VS, volatile standard; VD, volatile deviant. *p, 0.05; **p, 0.001, ***p, 0.0001. All of
these findings were replicated across the Discovery and the Validation datasets.
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model included the following: bilateral primary auditory cortex (A1;
MNI coordinates: left, [�42, �22, 7]; right, [46, �14, 8]; chosen as the
cortical input sources), bilateral superior temporal gyrus (STG; left
[�61, �32, 8]; right [59, �25, 8]), and bilateral inferior frontal gyrus
(IFG; left, [�46, 20, 8]; right, [46, 20, 8]). We considered nine competing
model architectures that differed in source regions and the pattern of
neuronal gain, and backward and forward connection (Extended Data

Fig. 5-1). To model the effect of environment on effective connectivity,
we examined the differences in PE response for stable versus volatile
conditions. Specifically, we entered the stable PE responses (stable
Deviants minus stable Standards) as “1” and volatile PE responses (vola-
tile deviants minus volatile standards) as “0.” In this way, the connectiv-
ity estimates reflect the fact that stable PEs are the condition of interest
and volatile PEs are the baseline comparison in DCM. The full details of
the model specification have been described by Garrido, Friston
(Garrido et al., 2008). Briefly, we modeled each source region with a sin-
gle equivalent current dipole and an input time delay with a prior mean
of 60ms; drift was modeled with a direct cosine transform of 1; and eight
modes were selected for the 0–400ms peristimulus time window, over
stable PE and volatile PE trials.

The explanatory models were grouped by families based on the mod-
ulations placed on neuronal gain and extrinsic connectivity, as follows:
(I) forward and neuronal gain family; (II) forward and backward family;
(III) forward, backward, and neuronal gain family; and (IV) null family
(no modulation in connectivity). We conducted Bayesian model selec-
tion, with a random-effects approach at both the model and family levels
(62). We computed both expected and exceedance probabilities for the
different families of models. The exceedance probability for a model
indicates how well this model explains the data compared with the other
models. We also conducted Bayesian model averaging to determine the
strength of the effective connectivity at each connection, weighted by the
likelihood of all models, and across all participants.

Data availability
The supporting data and materials for the article have been made avail-
able. Please find raw data files and the behavioral/connectivity scores at
the following address: https://espace.library.uq.edu.au/view/UQ:724759.

Results
Our first aim was to compare the strength of the predictive mod-
els established in stable and volatile contexts. For this purpose,
we examined the ERPs recorded at the frontocentral channel
(Fz), namely the MMN. In line with the vast oddball literature,
we consistently found that responses to deviant sounds were
larger than responses elicited by standard sounds, regardless of
the volatility for both the Discovery dataset (F(1,30) = 45.33,
p, 0.001, h 2 = 0.60) and the Validation dataset (F(1,40) = 88.14,
p, 0.001, h 2 = 0.69). Moreover, we found a significant interac-
tion between MMN and volatility in the Discovery dataset
(F(1,30) = 11.06, p= 0.002, h

2 = 0.27), which was replicated in the
Validation dataset (F(1,40) = 12.26, p=0.001, h

2 = 0.24). Critically,
a follow-up analysis revealed that MMN was larger under the sta-
ble compared with the volatile conditions again for both the

Table 2. Pearson’s and Bayesian correlation matrix for psychotic-like experi-
ence, statistical learning, and prediction error

Statistical
learning error

Stable
prediction error

Volatile
prediction error

Discovery dataset
Psychotic-like experience r 0.394* 0.326 0.188

BF10 4.370 1.986 0.609
Statistical learning error r 0.522** 0.327

BF10 33.993** 2.005
Validation dataset

Psychotic-like experience r 0.306* �0.001 0.024
BF10 2.553 0.191 0.217

Statistical learning error r 0.324* 0.061
BF10 3.137 0.267

Table displays both Pearson’s correlations (r) and Bayes factors (BF10). For all tests, the alternative hypothesis
specifies that the correlation is positive (10).
For Pearson’s correlations: *p, 0.05, **p, 0.01. For Bayes factors: *BF10 . 10, **BF10 . 30.

Movie 1. Spatiotemporal univariate analysis showing a significant main effect of PE in the
Discovery dataset. [View online]

Movie 2. Spatiotemporal univariate analysis showing a significant interaction between PE
and Volatility in the Discovery dataset. [View online]

Movie 3. Spatiotemporal univariate analysis showing a significant main effect of PE in the
Validation dataset. [View online]
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Discovery set (t(30) = �3.33, p=0.002, d = �0.60) and the
Validation set (t(40) =�3.74, p=0.001, d =�0.61; Fig. 3A,B).

We next examined differences in mean percentage errors in
probability estimation (statistical learning error) and mean confi-
dence ratings during stable and volatile conditions. The data
showed that participants had fewer errors in statistical learning
during stable conditions (Discovery: mean = 9.30%, SE =0.87;

Validation: mean = 8.62%, SE =0.87), compared with volatile
conditions (Discovery: mean = 12.38%, SE =1.07; Validation:
mean =13.54%, SE = 0.97; Discovery: t(30) = �2.40, p=0.023, d =
�0.43; Validation: t(43) = �4.21, p, 0.0001, d = �0.81). In addi-
tion, participants had greater confidence in their probability esti-
mates during stable conditions (Discovery: mean =2.57, SE =0.07;
Validation: mean =2.53, SE =0.06), compared with volatile

Figure 4. Brain responses underlying main effect of prediction error. A, Spatiotemporal univariate analysis revealed a significant main effect of PE (left column; this was replicated); and PE �
volatility interaction (right column; this was not replicated). B, Spatiotemporal multiple-regression analysis revealed a negative relationship between statistical learning errors and activity during the
interaction (stable PE. volatile PE); however, this result was not replicated at FEW-corrected significance, even after a region of interest analysis. C, Source reconstruction analysis revealed significant
clusters for stable PEs versus volatile PEs; however, these results were not replicated. IPL, Inferior parietal lobule; MFG, middle frontal gyrus; SPL, superior parietal lobule; MOG, middle occipital gyrus.
Except where otherwise specified, all maps are displayed at p, 0.05, FWE whole-volume corrected (Movie 1, Movie 2, Movie 3, Extended Data Figure 4-1). *p, 0.05.
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conditions (Discovery: mean =2.19, SE =0.05; Validation: mean
=2.08, SE =0.07; Discovery: t(30) = 4.78, p, 0.001, d=0.86;
Validation: t(43) = 6.98, p, 0.0001, d=1.00; Fig. 3C).

We then asked whether statistical learning errors were related
to the degree of MMN response. Pearson’s correlations and
Bayesian analysis revealed a significant correlation between statis-
tical learning errors and MMN in stable conditions [Discovery:
p=0.003 (padjusted , 0.01); BF10 = 33.99; Validation: p=0.036,

BF10 = 3.14; Fig. 3D, Table 2], which had very strong evidence in
the Discovery dataset and moderate evidence in the Validation
dataset.

Next, we asked whether aberrations in behavior (greater sta-
tistical learning errors) and neurophysiology (attenuated MMN)
were also aligned on the psychosis continuum. Pearson’s and
Bayesian correlations were conducted on psychotic experiences,
statistical learning errors, as well as MMN in stable and volatile

Figure 5. Statistical learning errors predict the severity of psychotic-like experiences in the nonclinical population. A, The winning model architecture, replicated across both datasets, had
connections between all six regions bilaterally (model 7), included volatility-dependent modulations in neuronal gain, and forward and backward connections. B, Regression plots for statistical
learning errors and top-down frontotemporal connectivity (in green; not replicated); statistical learning errors and psychotic-like experiences (in orange; replicated); and top-down frontotempo-
ral connectivity and psychotic experiences (in purple; not replicated; Extended Data Figure 5-1). *p, 0.05; **p, 0.001.
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conditions. We found a significant correlation between psychotic
experience and errors in statistical learning that was replicated
across both datasets (Discovery: p=0.028, BF10 = 4.37; Validation:
p=0.035, BF10 = 2.55; Table 2). This showed that healthy individu-
als with greater psychotic experiences were worse at learning about
sensory regularities. The fact that this was replicated provides strong
support for behavioral alterations in sensory inference aligning on
the nonclinical end of the psychosis continuum.

To further investigate the sensory PEs evoked by regularity
violations with fewer spatial and temporal constraints, we ran a
general linear model for the whole spatiotemporal volume of
brain activity. First, we supported previous auditory oddball
findings by showing a significant main effect of PE response
(standard sounds vs deviant sounds) peaking at 290ms (peak-
level F= 240.99, pFWE , 0.001) and 205ms (peak-level F=
170.92, pFWE , 0.001) in central and occipitoparietal channels,
and 25ms (peak-level F=25.26, pFWE = 0.004) in frontal chan-
nels (Movie 1). We also replicated our own findings by showing
the main effects of PE response in the Validation dataset that
peaked at similar time points, as follows: 300ms (peak-level
F= 176.59, pFWE , 0.001), 210ms (peak-level F= 77.44, pFWE ,
0.001), and 185ms (peak-level F=68.76, pFWE , 0.001) in cen-
tral and occipitoparietal channels (note: 25ms was not replicated;
Movie 3). We originally found a significant interaction between
PE response and volatility, at 165ms over occipitocentral chan-
nels (peak-level z= 4.27, pFWE = 0.015; Fig. 4A, Movie 2); how-
ever, this did not replicate in the Validation set.

Next, we asked whether statistical learning errors were related
to the neuronal correlates of volatility attuning. To address this
question, we conducted a spatiotemporal multiple-regression
analysis of the interaction between PEs and volatility (stable
PEs. volatile PEs) with statistical learning error as the predictor
variable. Our data in the Discovery study showed that a decrease
in statistical learning errors significantly predicted an increase in
brain activity at 165ms (peak-level z=3.64, cluster-level pFWE =
0.034; Fig. 4B). To determine where in the brain this effect came
from, we used source reconstruction techniques, which uncov-
ered an increased activity in the right superior frontal gyrus
(peak-level z=2.19, puncorrected = 0.014) and the right fusiform
gyrus (peak-level z= 1.89, puncorrected = 0.029; Extended Data Fig.
4-1). However, these results did not replicate, even after conduct-
ing a spatiotemporal volume of interest analysis (based on the
result from the Discovery study) for the multiple regression.

In the Discovery study, source-level analysis revealed that sta-
ble PEs engaged the middle frontal gyrus (peak-level z=4.23,
pFWE = 0.02), primary motor area (peak-level z= 4.45, pFWE =
0.009), and inferior parietal lobule (peak-level z=4.56, pFWE =
0.006). In comparison, volatile PEs engaged precuneus (peak-
level z=5.05, pFWE = 0.001) and middle occipital gyrus (peak-
level z=4.39, pFWE = 0.011). However, we were not able to
replicate these findings in the independent Validation sample.
None of the voxels survived FWE correction, nor did the uncor-
rected clusters correspond with the Discovery study (Fig. 4C).

The network architecture underlying the PE response has
been extensively studied previously (Opitz et al., 2002; Garrido et
al., 2007). Here, we were interested in (1) the effect of contextual
volatility on neuronal PE responses and (2) the effective connec-
tivity underpinning psychotic traits and statistical learning.

Bayesian model comparison was performed on 36 different
dynamic causal models (Extended Data Fig. 5-1), which were
based on the functional brain architecture previously shown to
underlie PE responses (Opitz et al., 2002; Garrido et al., 2007).
Here, PEs in stable blocks were compared with those in volatile

blocks. Results from Bayesian model selection using random-
effects family-level analysis (in both the Discovery and
Validation datasets) indicated that the best model included con-
nections among six a priori defined regions, with inputs to left
and right A1, neuronal gain within the A1, bilateral connections
between A1 and STGs and between STGs and IFGs, as well as
lateral connections between left and right A1, and left and right
STG (model 7; Fig. 5A). The optimal model, which had greater
modulation in neuronal gain, as well as backward and forward
connections, was replicated across both the Discovery and the
Validation datasets (Fig. 5A).

Next, we examined the altered neural dynamics related to
behavior and psychotic-like traits in the general, nonclinical pop-
ulation. First, we examined brain connectivity estimates by
applying Bayesian model averaging across all models (weighted
by their probability) and participants. In the Discovery dataset,
we found a strong, significant negative correlation between psy-
chotic-like experiences and top-down connectivity from the right
IFG to STG [p=0.005 (padjusted , 0.05), BF�0 = 18.28; Fig. 5B,
Table 3], and between statistical learning errors and top-down
connectivity from the right IFG to STG (p= 0.03; Fig. 5B).
However, these findings were not replicated.

Discussion
The aims of the current study were to investigate and replicate
the neural mechanisms that underpin statistical learning and vol-
atility attuning in healthy individuals with a range of psychotic-
like experiences. We measured individuals’ statistical learning
abilities (by asking them to estimate the probabilities of sounds)
in stable and volatile conditions while recording their brain activ-
ity using EEG. We pursued these goals in two independent data-
sets and in turn discuss the findings that did replicate across
both. During stable conditions, compared with volatile condi-
tions, statistical learning improved, prediction errors increased,
and there was greater modulation of neuronal gain, forward con-
nections, and backward connections. For the first time, we
showed that statistical learning (behaviorally assessed) relates to
prediction errors. Moreover, we were able to replicate the finding
that a greater degree of psychotic-like experiences in healthy
individuals is associated with impaired sensory statistical learn-
ing ability, providing strong evidence for the existence of a con-
tinuum of psychosis in the nonclinical population.

Table 3. Pearson’s and Bayesian correlation matrix for psychotic-like experi-
ence and effective connections

Psychotic-like experience

Discovery dataset Validation dataset

r BF10 r BF10

lA1–lA1 0.225 0.108 0.202 0.091
rA1–rA1 �0.094 0.346 �0.253 1.258
lA1–lSTG1 0.186 0.12 �0.094 0.328
lSTG1–lIFG �0.118 0.395 �0.063 0.271
rA1–rSTG1 0.074 0.169 0.192 0.094
rSTG1–rIFG 0.143 0.135 0.141 0.11
lSTG1–lA1 0.136 0.138 0.197 0.093
lIFG–lSTG1 0.219 0.11 �0.055 0.26
rSTG1–rA1 �0.076 0.316 �0.244 1.142
rIFG–rSTG �0.489** 18.282* �0.088 0.316

Pearson’s correlations, r; Bayes factors, BF10; l, left; r, right. For all tests, the alternative hypothesis specifies
that the correlation is negative (�0).
For Pearson’s correlations: *p, 0.05, **p, 0.01. For Bayes factors: *BF�0 . 10, **BF�0 . 30.
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MMN responses, statistical learning, and confidence, were
enhanced in stable, more predictable environments, than in
more volatile, less predictable, environments. Increased MMN
in stable (compared with volatile) conditions has been identified
in previous studies (Todd et al., 2011, 2014). MMN signals a PE:
a violation between what the brain predicts will happen and
what is actually experienced. As such, PEs are fundamental
teaching signals that drive updating of the brain’s predictive
model of the sensed world (Rao and Ballard, 1999; Garrido et al.,
2009a). The amount of updating depends on the precision weight-
ing of the PEs; which in turn depends on the relative uncertainty
of sensory information and prior beliefs (Mathys et al., 2011). In
Bayesian generative models, such as the Hierarchical Gaussian
Filter, environmental volatility is associated with decreased sen-
sory precision resulting in reduced precision weighting of the PEs
(Mathys et al., 2014). Thus, it follows that PE responses to regular-
ity violations will be attenuated in volatile compared with stable
conditions (Garrido et al., 2009b), which is in line with our
findings.

MMN in stable conditions were found to be associated with
better sensory statistical learning in the current study. Statistical
learning is the process by which the brain learns the statistical
structure in the environment and forms predictive models of
what is likely to happen next (Bendixen et al., 2007; Dale et al.,
2012; Tavano et al., 2014). Previous studies have demonstrated
that individuals are able to implicitly learn the statistical struc-
ture of sensory events in the environment (Garrido et al., 2013;
Lecaignard et al., 2015). Crucially, by simultaneously recording
PE responses (i.e., MMN) and behaviorally measuring statistical
learning, we showed, for the first time and across both the
Discovery and the Validation samples, that greater sensory PEs
are associated with improved explicit ability to gauge the sensory
regularities within one’s environment. This was specifically
found for MMN in stable rather than volatile conditions, sug-
gesting that MMN may not relate to the long-term rule updates
(i.e., global regularities) that influence statistical learning in the
volatile conditions (Mathys et al., 2011).

At the neural level, we found differences in the pattern of con-
nections underlying PE response in stable compared with volatile
conditions. Larger PEs in stable compared with volatile condi-
tions were produced by enhanced modulations in neuronal gain,
and backward and forward connections. Forward and backward
connections are thought to convey PEs and predictions (i.e.,
beliefs about sensory input), respectively. Neuronal gain emu-
lates local adaptation of neuronal responses (Kiebel et al., 2007).
This finding is in keeping with the predictive coding account of
the mechanisms underlying the perception of an auditory odd-
ball sequence (Garrido et al., 2008), and suggest that more pre-
cise predictive models about sensory input are enabled by greater
brain connectivity in stable than in volatile PEs.

We did not find consistent associations between alterations in
the neurophysiology or brain connectivity and psychotic-like
experiences in our nonclinical samples. While in our Discovery
sample we found weaker top-down frontotemporal connectivity
in people who reported more psychotic-like experiences, we
failed to replicate this finding in the Validation sample. It is pos-
sible that these brain alterations are not as robust in the healthy
population that experiences mild, psychotic-like experiences.
Indeed, there is conflicting evidence regarding the attenuation of
PEs (e.g., MMN and P300) in the nonclinical psychosis contin-
uum. A recent study has found reductions in sensory PEs
(Oestreich et al., 2019), while others have reported a lack of/
mixed evidence for an association (Klein et al., 1999; Sumich et

al., 2014; Broyd et al., 2016). Further research looking at the full
continuum, including a range of psychiatric groups, may eluci-
date whether or not a relationship between psychotic experiences
and brain alterations exists, and, if so, whether it also extends
into the nonclinical, healthy population.

Critically, in our study we uncovered and replicated the be-
havioral aberrations underlying predictive processing that are
aligned on the nonclinical continuum of psychosis. Previous
research has also uncovered altered behavior, for example in
social inference (Wellstein et al., 2020), self-tickling (Lemaitre et
al., 2016), and force matching (Teufel et al., 2010), in individuals
with subclinical psychotic experiences. However, a study by
Humpston et al. (2017), investigating a range of predictive proc-
essing behaviors, such as force matching, associative learning,
and reversal learning, was not been able to replicate the relation-
ship between altered behavior and psychotic-like experiences in
the general population. In response to the recent replication cri-
sis in the field, we decided to collect two independent samples
for discovery and validation of our findings. Indeed, we were
able to replicate that psychotic-like experiences are associated
with impaired statistical learning behavior. Therefore, we show,
with strengthened credibility, that there exists a continuum of
psychosis, even in the nonclinical end of the spectrum, that man-
ifests on a declining ability in sensory statistical learning.

In the current study, we explored the brain dynamics under-
pinning sensory learning under uncertainty, as well as the rela-
tionship between disruptions to predictive processes and
psychotic-like experiences in healthy individuals. We originally
investigated these processes in a Discovery dataset and then
sought to replicate the findings in an independent Validation
dataset. We found that individuals learn better and their brain
PE responses are greater during stable than during volatile con-
ditions. There is greater modulation of neuronal gain, and forward
and backward connections in stable conditions when a more pre-
cise model of the sensed environment is represented in the brain.
In addition, we were able to show that individuals with stronger
stable PE responses had improved sensory statistical learning
behavior. Importantly, we were able to replicate that aberrations
in predictive processes are aligned on a nonclinical continuum of
psychosis, in the sense that healthy people with more psychotic-
like experiences have poorer statistical learning ability.
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