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This article describes the use of Bayes factors for comparing dynamic

causal models (DCMs). DCMs are used to make inferences about

effective connectivity from functional magnetic resonance imaging

(fMRI) data. These inferences, however, are contingent upon assump-

tions about model structure, that is, the connectivity pattern between

the regions included in the model. Given the current lack of detailed

knowledge on anatomical connectivity in the human brain, there are

often considerable degrees of freedom when defining the connectional

structure of DCMs. In addition, many plausible scientific hypotheses

may exist about which connections are changed by experimental

manipulation, and a formal procedure for directly comparing these

competing hypotheses is highly desirable. In this article, we show how

Bayes factors can be used to guide choices about model structure, both

concerning the intrinsic connectivity pattern and the contextual

modulation of individual connections. The combined use of Bayes

factors and DCM thus allows one to evaluate competing scientific

theories about the architecture of large-scale neural networks and the

neuronal interactions that mediate perception and cognition.
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Introduction

Human brain mapping has been used extensively to provide

functional maps showing which regions are specialized for which

functions (Frackowiak et al., 1997). A classic example is the study

by Zeki et al. (1991) who identified V4 and V5 as being

specialized for the processing of color and motion, respectively.

More recently, these analyses have been augmented by functional

integration studies that describe how functionally specialized areas

interact and how these interactions depend on changes of context.

These studies make use of the concept of effective connectivity

defined as the influence one region exerts over another as instan-

tiated in a statistical model. A classic example is the study by

Buchel and Friston (1997) who used structural equation modeling

(SEM) to show that attention to motion modulates connectivity in

the dorsal stream of the visual system.
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In a recent paper (Friston et al., 2003), we have proposed the

use of dynamic causal models (DCMs) for the analysis of effective

connectivity. DCM posits a causal model whereby neuronal

activity in a given region causes changes in neuronal activity in

other regions, via interregional connections, and in its own activity,

via self-connections. Additionally, any of these connections can be

modulated by contextual variables like cognitive set or attention.

The resulting neurodynamics of the modeled system then cause

functional magnetic resonance imaging (fMRI) time series via local

hemodynamics that are characterized by an extended Balloon

model (Buxton et al., 1998; Friston, 2002).

A DCM is fitted to data by tuning the neurodynamic and

hemodynamic parameters so as to minimize the discrepancy

between predicted and observed fMRI time series. Importantly,

however, the parameters are constrained to agree with a priori

specifications of what range the parameters are likely to lie within.

These constraints, which take the form of a prior distribution, are

then combined with data via a likelihood distribution to form a

posterior distribution according to Bayes’ rule. Changes in effec-

tive connectivity can then be inferred using Bayesian inference

based on the posterior densities.

In this paper, we apply Bayesian inference not just to the

parameters of DCMs, as in Friston et al. (2003), but to the models

themselves. This allows us to make inferences about model

structure, that is, which of several alternative models is optimal

given the data. Such decisions are of great practical relevance

because we still lack detailed knowledge about the anatomical

connectivity of the human brain (Passingham et al., 2002). Deci-

sions about the intrinsic connectivity of DCMs are therefore usually

based on inferring connections from supposedly equivalent areas in

the Macaque brain for which the anatomical connectivity is well

known (Stephan et al., 2001). This procedure has many pitfalls,

however, including a multitude of incompatible parcellation

schemes and frequent uncertainties about the homology and func-

tional equivalence of areas in the brains of man and monkey. This

problem may be less severe in sensory systems, but is of particular

importance for areas involved in higher cognitive processes like

language (Aboitiz and Garcia, 1997). Thus, there are often consid-

erable degrees of freedom when defining the connectional structure

of DCMs of the human brain. In this paper, we show how Bayes

factors can be used to guide the modeller in making such choices.

A second question concerning model structure is which of the

connections included in the model are modulated by experimen-

tally controlled contextual variables (e.g., attention). This choice
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reflects the modeller’s hypothesis about where context-dependent

changes of effective connectivity occur in the modeled system. We

will also demonstrate how Bayesian model selection can be used to

distinguish between competing models that represent the many

plausible hypotheses.

The paper is structured as follows. In the Neurobiological issues

section, we introduce briefly the neurobiological context in which

DCM is usually applied. We focus particularly on hierarchical

models and the distinction between anatomical and functional

characterizations. In the Theory section, we review dynamic causal

modeling from a theoretical perspective describing the model

priors and likelihood functions that are used in a Bayesian

parameter estimation algorithm. We also describe the Bayes factors

that are used to weigh evidence for and against competing

scientific hypotheses. Results on simulated and experimental data

are presented in the Applications section.

Notation

We use uppercase letters to denote matrices and lowercase to

denote vectors. N(m, R) denotes a uni- or multivariate Gaussian

with mean m and variance or covariance R. IK denotes the K � K

identity matrix, 1K is a 1 � K vector of 1 s, 0K is a 1 � K vector of

zeros, if X is a matrix, Xij denotes the i, jth element, XT denotes the

matrix transpose, and vec(X) returns a column vector comprising

its columns, diag(x) returns a diagonal matrix with leading diag-

onal elements given by the vector x, � denotes the Kronecker

product, and log x denotes the natural logarithm.
Neurobiological issues

Many applications of DCM, both in this article and in previous

work (Friston et al., 2003; Mechelli et al., 2003), refer to ‘‘bottom-

up’’ and ‘‘top-down’’ processes, and we envisage that a large

number of future applications of DCM will rest on this distinction.

Some of the possible DCM architectures for modeling these pro-

cesses may, at first glance, seem at odds with traditional cognitive

theories that relate bottom-up processes to so-called ‘‘forward’’

connections and top-down processes to ‘‘backward’’ connections

(Ungerleider et al., 1998). Here we try to clarify this relationship

using some simple examples from the visual system and emphasize

the need for precise terminology when distinguishing between the

levels of anatomical connectivity (forward vs. backward connec-

tions) and cognitive processes (bottom-up vs. top-down).

Classical theories of visual information processing posit a

hierarchy of cortical areas, each performing a specialized analysis

and feeding the results of its computations to the next (i.e., higher)

level (Marr, 1982). The anatomical basis for information transfer

from lower to higher areas in this bottom-up model is the so-called

‘‘forward’’ (or ‘‘feed-forward’’) connections that terminate in the

granular layer (i.e., layer IV) of the higher area and originate in

both supra- and infragranular layers of the source area (Felleman

and Van Essen, 1991). Stimulus-dependent bottom-up processes

are not sufficient, however, to explain the effects of contextual

factors (e.g., cognitive set, expectation, or attention) that can

induce substantial changes in information processing. These mod-

ulatory processes are often called top-down processes and are

mediated anatomically by so-called ‘‘backward’’ (or ‘‘feedback’’)

connections from higher to lower areas that both originate and

terminate in infra- and supragranular layers.
The neurophysiological mediation of top-down processing is

complex and not well understood, but comprises at least two

different mechanisms (see below). Although differential laminar

patterns cannot currently be represented in DCMs, one can model

simple hierarchies of areas in DCM, and in these hierarchies

connections can be classified as forward or backward based on

the relative position of the areas in the hierarchy (see Fig. 24 in

Friston et al., 2003). It may appear natural to assume that, in DCM,

bottom-up effects should always be modeled by a modulation of

forward connections, and top-down effects should be modeled by a

modulation of backward connections. However, this is not the case.

Consider a very simple example of a DCM that consists of two

reciprocally connected visual areas V1 and V5, with V1 receiving

visual input (VIS STIM) (Fig. 1A). Let us imagine that some visual

stimuli are moving, whereas others are stationary. It is well

established that V5 is particularly sensitive to motion information,

that is, V5 shows increased responsiveness to V1 inputs whenever

the stimulus is moving (Albright and Stoner, 1995) (Fig. 1B). In

DCM, this bottom-up process would be modeled by modulating

the V1–V5 forward connection by a factor that indicates stimulus

motion (MOT, Fig. 1A). However, top-down processes can also be

expressed through a modulation of forward connections. For

example, imagine that (i) stimuli are always moving, and (ii)

attention is sometimes directed to the motion of the stimuli and

sometimes to some other stimulus property (e.g., color). Previous

studies have demonstrated that V5 responses to V1 inputs are

enhanced whenever motion is attended (Buchel and Friston, 1997;

Chawla et al., 1999; Friston and Buchel, 2000; O’Craven et al.,

1997; Treue and Manuel, 1996). This attentional top-down effect

conforms to a ‘‘gain control’’ mechanism and is mediated neuro-

physiologically by backward connections from higher areas (rep-

resented by ‘‘X’’ in Fig. 1D). These influence those neurons in V5

that receive inputs from V1 via forward connections (Angelucci et

al., 2002; Johnson and Burkhalter, 1997) to enhance their respon-

siveness to V1 inputs, possibly through interactions between

dendritic and somatic postsynaptic potentials (Siegel et al., 2000)

(see Fig. 1D) or voltage-dependent NMDA receptors. Although

this level of detail cannot currently be modeled in DCMs, we can

model precisely the same mechanism, at a coarser level, by

allowing the V1–V5 forward connection to be modulated by

attention (Fig. 1C). This approach has been applied to primate

single cell data (Reynolds et al., 1999).

The behavior of this model then corresponds to the observed

neurophysiology: the magnitude of stimulus-dependent responses

in V5 (i.e., the V5 responses to V1 inputs) is augmented whenever

motion is attended. These examples show that modulation of

forward connections can represent a bottom-up process (if the

contextual input refers to a stimulus property; Fig. 1A) as well as a

top-down mechanism (if the contextual input represents cognitive

set-like attention, Fig. 1C).

In addition to stimulus-locked, multiplicative gain control mech-

anisms, attentional top-down modulation can be achieved by at least

onemore process. For example, during attention, an enduring shift in

the baseline responses of visual areas has even been observed in the

absence of stimuli (Chawla et al., 1999; Kastner et al., 1999; Luck et

al., 1997). Neurophysiologically, this additive baseline shift is

believed to be mediated by backward connections that do not, as

in the case of the gain control mechanism, simply sensitize post-

synaptic cells to inputs from lower areas, but exert a more direct

‘‘driving’’ effect on neurons in the target area (Luck et al., 1997).

There are various ways of modeling this. If one does not know what
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area might represent the source of this attentional top-down effect,

one can model the influence of attention to motion onto V5 as a

direct, additive increase in V5 activity (ATT, Fig. 2A). If, however,

one has reason to believe that a particular area, for example, the

superior parietal cortex (SPC), mediates this effect, it can be

included in the model as shown in Fig. 2B. Here, attention drives

SPC whose backward connections activate V5. This models an

increase in attentional effects in a purely additive way, but may be a

sufficient explanation for the data.

Further plausible ways of modeling top-down mechanisms in

DCMs exist, including modulation of self-connections (which

would correspond to modeling a context-dependent change of

intra-areal self-inhibition), but we will not go into further details
Fig. 2. DCM models of additive processes. (A) Same basic DCM as in Fig.

1, but without modulation of either connection. Instead, attention to motion

leads to a direct (additive) increase of V5 activity, independent of the

presence and nature of visual input. This represents a simple model of top-

down baseline shift processes without specifying which areas represent the

physiological source of the top-down influence. (B) In addition to A, this

DCM includes the superior parietal cortex (SPC) as a putative source of

attentional top-down influences onto visual areas.

Fig. 1. DCM models of modulatory processes. (A) A simple DCM that

includes visual areas V1 and V5. Visual stimuli drive activity in V1 that is

reciprocally connected to V5. The strength of the forward connection V1–

V5 depends on whether stimuli are moving or stationary, that is, V1–V5 is

modulated by a vector MOT indicating the presence of motion in the visual

input. (B) The bottom-up process modeled by A is shown schematically at a

synaptic level. The strength of the input from the V1 neuron to the dendritic

tree of the V5 neuron is enhanced for moving stimuli. The strength of the

synaptic transmission (green circle) simply follows the strength of the input

from V1. (C) Same DCM as in A, except that this model allows for

modulation of the V1–V5 forward connection by attention to motion

(ATT). (D) Same schema as in B, but showing the top-down gain control

process modeled by C at a synaptic level. Here, the strength of the synaptic

response of the V5 neuron to inputs from the V1 neuron (green circle) is

modulated by simultaneous inputs from a higher attention-related area X to

the same V5 neuron (red circle). These inputs change the biophysical

properties of the dendritic tree of the V5 neuron, rendering it more

susceptible to inputs from V1 neurons. Various potential mechanisms for

this modulation exist, for example, see Siegel et al. (2000).
here. The main message of this section is that, depending on the

exact mechanism that one models and the nature of the modulatory

input, top-down effects can be mediated both by modulation of

forward and backward connections. To this end, it is useful to

distinguish between the type of anatomical connections included in

the model (forward vs. backward connections) and the cognitive

processes modeled (bottom-up vs. top-down). We will return to

some of these issues later because they provide a very nice

example of alternative architectures for attention that can be

disambiguated using Bayesian model selection.
Theory

In the first part of this section, we briefly review the mathe-

matical model underlying DCM, focussing on the specification of

the priors and model likelihood. Readers unfamiliar with DCM are

advised to first read Friston et al. (2003). We then show how the

prior and likelihoods are combined via Bayes rule to form the

posterior distribution and how this is computed iteratively using an

Expectation-Maximization (EM) algorithm.

The second part of the theory section, starting in the Model

evidence, BIC, and AIC section, describes how to compute the

model evidence. This can be regarded as the second level of

Bayesian inference. The evidence can be decomposed into two

types of term: accuracy terms and complexity terms. The best

model, or one with the highest evidence, strikes an optimal balance

between the two. In the Model evidence, BIC, and AIC section, we

describe how Bayes factors, ratios of model evidences, are used to

compare different models. We suggest how Bayes factors be used

to make decisions and present a coding perspective on Bayesian

model comparison.
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Readers not familiar with Bayesian modeling are referred to

Gelman et al. (1995). More specifically, the Laplace approxima-

tions, model evidences, and Bayes factors that we shall encounter

are described in Kass and Raftery (1993, 1995) and Raftery (1995).

Dynamic causal models

The term ‘causal’ in DCM arises because the brain is treated as a

deterministic dynamical system (see e.g., Section 1.1 in Friston et

al., 2003) in which external inputs cause changes in neuronal

activity that in turn cause changes in the resulting fMRI signal.

The term ‘cause’ is therefore used quite differently than in, for

example, SEM (Pearl, 1998) or probabilistic graphical models

(Mackay, 2003).

DCMs comprise a bilinear model for the neurodynamics and an

extended Balloon model (Friston, 2002; Buxton et al., 1998) for

the hemodynamics. The neurodynamics are described by the

following multivariate differential equation

żt ¼ Aþ
XM
j¼1

utðjÞBj

 !
zt þ Cut ð1Þ

where t indexes continuous time and the dot notation denotes a

time derivative. This is known as a bilinear model because the

dependent variable żt is linearly dependent on the product of zt and

ut. That ut and zt combine in multiplicative fashion endows the

model with ‘nonlinear’ dynamics that can be understood as a

nonstationary linear system that changes according to ut. Impor-

tantly, because ut is known, parameter estimation is tractable. The

neuronal activity zt is an L � 1 vector comprising activity in each

of the L regions and the input ut is an M � 1 vector comprising the

scalar inputs ut( j) where j = 1. . .M.

The effective connectivity in DCM is characterized by a set of

‘intrinsic connections’ A that specify which regions are connected

and whether these connections are unidirectional or bidirectional.

We also define a set of input connections C that specify which

inputs are connected to which regions, and a set of modulatory

connections Bj that specify which intrinsic connections can be

changed by which inputs. The overall specifications of input,

intrinsic, and modulatory connectivity comprise our assumptions

about the model structure. This in turn represents a scientific

hypothesis about the structure of the large-scale neuronal network

mediating the underlying cognitive function.

The values in the connectivity matrices can be concatenated

into the connectivity vector

hc ¼

vecðAÞ

vecðBÞ

vecðCÞ

2
66664

3
77775 ð2Þ

The model structure is defined by specifying which entries in the

above matrices are allowed to take on nonzero values, that is,

which inputs and regions are connected. A given model, say model

m, is then defined by its pattern of connectivity. Note that only

connections that are allowed to be nonzero will appear in hc. For a
network with Na intrinsic, Nb modulatory, and Nc input connec-

tions, hc will have Nh = Na + Nb + Nc entries.

In DCM, neuronal activity gives rise to hemodynamic activity

by a dynamic process described by an extended Balloon model.
This involves a set of hemodynamic state variables, state equa-

tions, and hemodynamic parameters hh (for details, see Friston et

al., 2003).

We can concatenate all neurodynamic and hemodynamic

parameters into the overall p-dimensional parameter vector

h ¼
hc

hh

2
4

3
5 ð3Þ

This vector contains all the parameters of a DCM model that we

need to estimate.

For given input u and DCM parameters h, model predictions

h(h, u) can be produced by integrating the state equation as

described in Friston et al. (2003) and Friston (2002). This integra-

tion is efficient because most fMRI experiments result in input

vectors that are highly sparse. For a data set with Ns scans, we can

then create a LNs � 1 vector of model predictions h(h, u) covering
all time points and all areas (in the order all time points from region

1, region 2, etc.). The observed data y, also formatted as an LNs � 1

vector, is then modeled as

y ¼ hðh; uÞ þ Xb þ w ð4Þ

where w is an LNs � 1 vector of Gaussian prediction errors with

mean zero and covariance matrix Ce, X contains effects of no

interest, and b is the associated parameter vector. The matrix X

would include, for example, regressors to model scanner-related

low-frequency drifts in fMRI time series that are neurobiologically

irrelevant. The error covariance is given by Ce = INs
� K, where K

is an L � L diagonal matrix with Kii denoting error variance in the

ith region.

Parameter priors and likelihood

Priors are placed on the A and Bj matrices so as to encourage

parameter estimates that result in a stable dynamic system (for a

discussion, see Section 2.3.1 in Friston et al., 2003). For each

connection in A and Bj, the prior is

pðAikÞ ¼ Nð0; vaÞ

pðBj
ikÞ ¼ Nð0; vbÞ ð5Þ

where the prior variance va is set to ensure stability with high

probability (for a discussion of this issue, see Appendix A.3 in

Friston et al., 2003). For each connection in C, the prior is

pðCimÞ ¼ Nð0; vcÞ ð6Þ

These priors are so-called ‘shrinkage-priors’ because the posterior

estimates shrink towards the prior mean, which is zero. The size of

the prior variance determines the amount of shrinkage.

The above information can be concatenated into the overall

prior

pðhcÞ ¼ Nðhcp;Cc
pÞ ð7Þ

where the p subscripts denote priors and

hcp ¼ ½0Nh �
T

Cc
p ¼ diag½va1Na

; vb1Nb
; vc1Nc

� ð8Þ
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The prior mean hp
h and covariance Cp

h of the hemodynamic

parameters are set to restrict parameter estimates to a physiolog-

ically meaningful range as described in Friston et al. (2003).

Consequently, the overall prior mean and covariance for a DCM

are given by

hp ¼
hcp

hhp

2
4

3
5

Cp ¼
Cc
p 0

0 Ch
p

2
4

3
5 ð9Þ

The prior and likelihood distributions for a given DCM model,

say model m, are therefore

pðhAmÞ ¼ Nðhp;CpÞ

pðyAh;mÞ ¼ Nðhðh; uÞ þ Xb;CeÞ ð10Þ

These can be expanded as

pðhAmÞ ¼ ð2pÞ	p=2ACpA	1=2exp 	 1

2
eðhÞTC	1

p eðhÞ

 �

pðyAh;mÞ ¼ ð2pÞ	Ns=2ACeA	1=2exp 	 1

2
rðhÞTC	1

e rðhÞ

 �

ð11Þ

where

eðhÞ ¼ h 	 hp

rðhÞ ¼ y	 hðh; uÞ 	 Xb ð12Þ

are the ‘parameter errors’ and ‘prediction errors’.

Estimation of parameter posteriors

From Bayes’ rule, the posterior distribution is equal to the

likelihood times the prior divided by the evidence (Gelman et al.,

1995),

pðhAy;mÞ ¼ pðyAh;mÞpðhAmÞ
pðyAmÞ ð13Þ

Taking logs gives

logpðhAy;mÞ ¼ logpðyAh;mÞ þ logpðhAmÞ 	 logpðyAmÞ ð14Þ

The parameters that maximize this posterior probability, the

Maximum Posterior (MP) solution, can then be found using a

Gauss–Newton optimization scheme whereby parameter estimates

are updated in the direction of the gradient of the log-posterior by

an amount proportional to its curvature (see e.g., Press et al., 1992).

The model parameters are initialized to the mean of the prior

density.

If the proportion of data points to model parameters is suffi-

ciently large, as is the case with DCM models of fMRI time series,

then the posterior is well approximated with a Gaussian. The aim

of optimization is then to estimate the mean and covariance of this

density which can be achieved using an Expectation-Maximization

(EM) algorithm described in Section 3.1 of Friston (2002). In the

E-step, the posterior mean ĥ and the posterior covariance R̂ are
updated using a Gauss–Newton step, and in the M-step, the hyper-

parameters of the noise covariance matrix Ce are updated. These

steps are iterated until the posterior distribution

pðhAy;mÞ ¼ NðhMP;RMPÞ ð15Þ

is reached. The posterior density can then be used to make

inferences about the size of connections.

In statistics, approximation of a posterior density by a Gaussian

centered on the maximum posterior solution is known as a Laplace

approximation (Kass and Raftery, 1993). The parameters of no

interest b can also be estimated by forming an augmented param-

eter vector that includes h and b and an augmented observation

model, as described in Eq. (7) of Friston et al. (2003).

Model evidence, BIC, and AIC

The structure of a DCM model is defined by specifying which

regions are connected to each other, via the intrinsic connectivity

matrix, and which inputs can alter which connections, via the

modulatory matrix. A given model, say model m, is then defined

by this pattern of connectivity. Different models can be compared

using the evidence for each model, and this can be thought of as a

second level of Bayesian inference. The model evidence is com-

puted from

pðyAmÞ ¼
Z

pðyAh;mÞpðhAmÞdh ð16Þ

Notice that the model evidence is simply the normalization term

from the first level of Bayesian inference given in Eq. (13). In the

Appendix A, we show that, using the Laplace approximation, this

leads to an expression for the log model evidence consisting of an

accuracy and complexity term defined as follows

logpðyAmÞL ¼ AccuracyðmÞ 	 ComplexityðmÞ ð17Þ

where

AccuracyðmÞ ¼ 	 1

2
logACeA	 1

2
rðhMPÞTC	1

e rðhMPÞ ð18Þ

ComplexityðmÞ ¼ 1

2
logACpA	 1

2
logARMPA

þ 1

2
eðhMPÞTC	1

p eðhMPÞ ð19Þ

Use of base-e or base-2 logarithms leads to the log-evidence

being measured in ‘nats’ or ‘bits’, respectively. The first term in

Accuracy(m) can be expressed as the product of the noise variances

Kii over all regions, and the second term will be close to unity as

the Kii is estimated based on observed errors r(hMP). The com-

plexity terms will be discussed further in the Coding perspective

section.

Computation of log p( yjm)L requires inversion of the prior

covariance matrix (i.e., Cp
	1). To compute this quantity, it is

therefore recommended to use a full-rank prior over the hemody-

namic parameters. Alternatively, one can use a lower-rank prior (as

in Friston et al., 2003) and compute log p( yjm)L by first projecting

the hemodynamic parameters onto the relevant subspace.

A drawback of the Laplace approximation to the model

evidence is its dependence on parameters of the prior density, for

example, the prior variance on intrinsic connections va. This
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dependence is particularly acute in the context of DCM where va is

chosen to ensure (with high probability) that the optimization

algorithm converges to a stable solution. This means it is difficult

to compare models with different numbers of connections.

We therefore do not employ the Laplace approximation in this

paper but make use of alternative approximations. The first, the

Bayesian information criterion (BIC) (Schwarz, 1978), is a special

case of the Laplace approximation that drops all terms that do not

scale with the number of data points. In the Appendix A, we show

that for a DCM, it is given by

BIC ¼ AccuracyðmÞ 	 p

2
logNs ð20Þ

where p is the number of parameters in the model. The second

criterion we use is Akaike’s (1973b) information criterion (AIC).

AIC is maximized when the approximating likelihood of a novel

data point is closest to the true likelihood, as measured by the

Kullback–Liebler divergence (this is shown in Ripley, 1995). For

DCM, AIC is given by

AIC ¼ AccuracyðmÞ 	 p ð21Þ

Though not originally motivated from a Bayesian perspective,

model comparisons based on AIC are asymptotically equivalent to

those based on Bayes factors (Akaike, 1973a), that is, AIC

approximates the model evidence.

Empirically, BIC is observed to be biased towards simple

models and AIC to complex models (Kass and Raftery, 1993).

Indeed, inspection of Eqs. (20) and (21) shows that for values of p

and Ns typical for DCM, BIC pays a heavier parameter penalty

than AIC.

Bayes factors

Given models m = i and m = j, the Bayes factor comparing

model i to model j is defined as (Kass and Raftery, 1993, 1995)

Bij ¼
pðyAm ¼ iÞ
pðyAm ¼ jÞ ð22Þ

where p( yjm = j) is the evidence for model j found by exponen-

tiating the approximations to the log-evidence in Eqs. (17), (20), or

(21). When Bij > 1, the data favor model i over model j, and when

Bij < 1, the data favor model j.

The Bayes factor is a summary of the evidence provided by the

data in favor of one scientific theory, represented by a statistical

model, as opposed to another. Just as a culture has developed around

the use of P values in classical statistics (e.g., P < 0.05), so one has

developed around the use of Bayes factors. Raftery (1995), for

example, presents an interpretation of Bayes factors as shown in
Table 1

Interpretation of Bayes factors

Bij p(m = ijy) (%) Evidence in

favor of model i

1–3 50–75 Weak

3–20 75–95 Positive

20–150 95–99 Strong

z150 z99 Very strong

Bayes factors can be interpreted as follows. Given candidate hypotheses i

and j, a Bayes factor of 20 corresponds to a belief of 95% in the statement

‘hypothesis i is true’. This corresponds to strong evidence in favor of i.
Table 1. Jefferys (1935) presents a similar grading for the compar-

ison of scientific theories. These partitionings are somewhat arbi-

trary but do provide rough descriptive statements.

Bayes factors can also be directly interpreted as odds ratios,

where Bij = 100, for example, corresponds to odds of 100-to-1.

Bayes factors can be used to convert a prior odds ratio into a

posterior odds ratio. For equal prior odds, the posterior odds are

equal to the Bayes factor. From this we can compute the equivalent

posterior probability of hypothesis i as shown, for example, in

Table 1.

Bayes factors in Bayesian statistics play a similar role to P

values in classical statistics. In Raftery (1995), however, Raftery

argues that P values can give misleading results, especially in

large samples. The background to this assertion is that Fisher

originally suggested the use of significance levels (the P values

beyond which a result is deemed significant) a = 0.05 or 0.01

based on his experience with small agricultural experiments

having between 30 and 200 data points. Subsequent advice,

notably from Neyman and Pearson, was that power and signifi-

cance should be balanced when choosing a. This essentially

corresponds to reducing a for large samples (but they did not say

how a should be reduced). Bayes factors provide a principled way

to do this.

The relation between P values and Bayes factors is well illus-

trated by the following example due to Raftery (1995). For linear

regression models, one can use Bayes factors or P values to decide

whether to include an extra regressor. For a sample size of Ns = 50,

positive evidence in favor of inclusion (say,B12 = 3) corresponds to a

P value of 0.019. ForNs = 100 and 1000, the corresponding P values

reduce to 0.01 and 0.003. If one wishes to decide whether to include

multiple extra regressors, the corresponding P values drop more

quickly.

Importantly, unlike P values, Bayes factors can be used to

compare non-nested models. They also allow one to quantify

evidence in favor of a null hypothesis. A possible disadvantage

is their dependence on parameters of the prior distributions. For

this reason we have decided to use AIC and BIC approximations to

the model evidence, as described in the previous section.

Making decisions

If one wishes to make decisions based on Bayes factors, then

some cut-off value is required. In Bayesian decision theory, the

choice of cut-off is guided by a ‘loss function’ or ‘utility’ that

captures the costs of making false-positive and false-negative

decisions (Bernardo and Smith, 2000).

In this paper, we suggest a conservative strategy which is to

compute Bayes factors based on AIC and BIC and to make a

decision only if both factors agree. In particular, if both AIC and

BIC provide Bayes factors of at least e (the natural exponent

2.7183), we regard this as ‘consistent’ evidence. Further, we regard

consistent evidence as the basis for decision-making, for example,

the decision to fit new models or the decision to regard one of

several hypotheses as a ‘working hypothesis’.

The reason for this cut-off is as follows. For a simpler model to

be favored over a complex one, the limiting factor is due to AIC. If

the simpler model has dp fewer parameters, and both models are

equally accurate, then the change in log evidence is 	dp nats. The
smallest value dp = 1 gives a Bayes factor of e.

For a more complex model to be favored over a simpler one, the

limiting factor is due to BIC. In this case, we can work out the
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number of scans required to achieve a Bayes factor of e by noting

that the change in log-evidence is

DBIC ¼ Ns

2
log 1þ ds

100


 �
þ dp

2
logNs ð23Þ

where ds is the percentage increase in signal variance. Fig. 3, for

example, shows that for ds = 2, which is typical of the fMRI model

comparisons in this paper, about 400 data points are required.

Generally, for smaller dp and ds, it is harder to tell models apart.

Overall, we ‘accept’ one model over another if there is a ‘nats

difference’ between them.

For the case of comparing a simpler model to a more complex

one with dp = 1, this cut-off results in a very conservative test. This

is because even if the two models are truly equally accurate, on any

given finite data set, one model will appear more accurate than the

other. Because this will be the simpler model for half of such data

sets, the sensitivity of the test is 50%. This test does, however, have
Fig. 3. Dependence of BIC on the number of samples. The figure plots the

Bayes factor B12 computed from BIC vs. the number of scans Ns where

model 1 has one more parameter than model 2 and the relative increase in

signal variance is (a) 1% and (b) 2%, the latter being typical fMRI data used

in this paper. The horizontal line shows a Bayes factor of e.
a high specificity as no decision is made if the cut-off is not

exceeded. As dp increases, so does the sensitivity.

Finally, we note that a Bayes factor of e corresponds to a

posterior probability of 73%, that is, there is a 27% probability that

our decision is incorrect! This may seem extraordinarily high, but,

as indicated in the previous section, values of posterior probabilities

do not translate in a straightforward way to P values. If we assume,

for example, that quantities governing statistical inference, such as

the variance of parameter estimates, scale in DCM as they do in

linear regression, then, given typical fMRI sample sizes of 200–400

scans, a Bayes factor of e would correspond to a P value of less than

0.01 (see the linear regression example in the Bayes factors section).

Coding perspective

In this section, we consider Bayesian model comparison from

an information theoretic or ‘coding’ perspective. Imagine one

wished to transmit a data set over a communication channel. This

could be done by simply digitizing the data and transmitting it. It

would occupy a certain number of bits of the channel. Alterna-

tively, one could fit a model to the data and then send the model

parameters and the prediction errors, the total number of bits

required being the sum of the parameter bits and the error bits.

Better models require fewer bits to be transmitted, and for data

containing discernible patterns, model-based coding is superior.

This is the rationale behind the Minimum Description Length

(MDL) model comparison criterion (Wallace and Boulton, 1968).

In fact, a version of MDL (Rissanen, 1989) is equal to the negative

of the BIC, that is, MDL = 	BIC. The link with Bayesian

inference is that the sender and receiver must agree on the

transmission protocol so that they know how to encode and decode

the messages. The choice of coding scheme for the parameters

corresponds to the choice of prior and the choice of coding scheme

for the errors corresponds to the likelihood.

In information theory (Cover and Thomas, 1991), the ‘infor-

mation content’ of an event x is related to its probability by

SðxÞ ¼ log
1

pðxÞ ¼ 	logpðxÞ ð24Þ

More precisely, Shannon’s coding theorem implies that x can be

communicated at a ‘cost’ that is bounded below by 	log p(x). Use

of base-e or base-2 logarithms leads to this cost being measured in

‘nats’ or ‘bits’, respectively. In what follows, we refer to S(x) as the

cost of communicating x.

By looking at the appropriate terms in the log-evidence, one can

read off the cost of coding the prediction errors region by region

and the cost of coding each type of parameter. For the Laplace

approximation we can equate

	logpðyAmÞ ¼
X
i

SeðiÞ þ
X
k

SpðkÞ þ Sd ð25Þ

with Eq. (17) where Se(i) is the cost of prediction errors in the ith

region, Sp(k) is the cost of the kth parameter, and Sd is the cost of

the dependency between parameters (captured in the posterior

covariance matrix). We see that

SeðiÞ ¼ 0:5logKii þ 0:5
1

Kii

riðhMPÞT riðhMPÞ

SpðkÞ ¼ 0:5log
r2
priorðkÞ

r2
posteriorðkÞ

þ 0:5
1

h2priorðkÞ
ekðhMPÞT ekðhMPÞ ð26Þ
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where Kii denotes the error variance in the ith region, rposterior
2 (k) is

the posterior variance of the kth parameter taken from the relevant

diagonal in the posterior covariance matrix RMP, and rprior
2 (k) is the

prior variance of the kth parameter and is taken from the appro-

priate diagonal entry in Cp. For example, if k refers to an intrinsic

connection rprior
2 (k) = va. Eq. (26) shows that the costs of

archetypal intrinsic, modulatory, and input connections are deter-

mined by va, vb, and vc. This again highlights the dependence of the

Laplace approximation on these quantities. In contrast, the AIC

and BIC criteria assume that the cost of coding a parameter is the

same regardless of which parameter it is. For AIC, this cost is 1 nat

and for BIC it is 0.5 log Ns nats.

For a given fitted DCM, we can decompose the model evidence

into the costs of coding prediction errors, region by region, and the

cost of coding the parameters. It is also possible to decompose

Bayes factors into prediction error and parameter terms, and this

will give an indication as to why one model is favored over

another.

Fig. 5. Comparing intrinsic connectivity: inputs. The plots (bottom to top)

show the driving input u1 and modulatory inputs u2 and u3. These inputs

were used together with the network structures in Fig. 4 to produce

simulated data. These inputs are also identical to the ‘Photic’, ‘Motion’, and

‘Attention’ variables used in the analysis of the attention to visual motion

data (see Figs. 7 and 8).
Applications

In this section, we describe fitting DCMs to fMRI data from an

attention to motion experiment and a visual object categorization

experiment. We also describe fitting models to simulated data to

demonstrate the face validity of the model comparison approach.

These data were generated so as to have similar signal to noise

ratios (SNRs) to the fMRI data, where SNR is defined as the ratio
Fig. 4. Comparing intrinsic connectivity structures. Synthetic DCM models

comprising the three regions, R1, R2 and R3. Model 1 (left panel) has only

forward connections and model 2 (right panel) has a reciprocal connectivity.

In both networks, activity is driven by input u1 and forward connections are

modulated by inputs u2 and u3. These inputs are shown in Fig. 5.
of signal amplitude to noise amplitude (Papoulis, 1991). For

regions receiving driving input, the SNRs were approximately 2

for the attention data and 0.5 for the visual object data. These SNRs

were computed by dividing the standard deviation of the DCM

predictions by the estimated observation noise standard deviation.

We typically chose the SNR of the simulated data to be unity.

Comparing intrinsic connectivity

In this section, we use Bayes factors to compare DCMs with

different intrinsic connectivity patterns. The ability to determine

the most likely intrinsic connectivity pattern of a model given the

observed functional data is highly relevant in practice because

there still is very little detailed knowledge about anatomical

connections in the human brain (Passingham et al., 2002). Defi-

nitions of human brain models therefore usually rely on inferring

connections from supposedly equivalent areas in the Macaque

brain where the connectivity pattern is known at a great level of

detail (Stephan et al., 2001). The difficulties associated with this

approach have been described in the Introduction. Additional

uncertainty is due to the problem that, even if one knew all

anatomical connections between a given set of areas, the question

would remain whether all of these connections are relevant within a

given functional context.

To demonstrate how Bayes factors can help in cases of

uncertainty about the intrinsic connectivity, we investigated the
Table 2

Comparing intrinsic connectivity

B12 B21

AIC 4.7 2 � 108

BIC 230 4 � 106

The table shows the Bayes factor B12 averaged over 10 runs of feed-forward

data (from model 1), and B21 averaged over 10 runs of reciprocal data (from

model 2). AIC and BIC consistently provide between positive and very

strong evidence in favor of the correct model.



Table 3

Comparing intrinsic connectivity

Source Model 1 vs. model 2

relative cost (bits)

Bayes

factor B12

R1 error 0.03 0.98

R2 error 	0.12 1.09

R3 error 0.20 0.87

Parameters (AIC) 	2.89 7.39

Parameters (BIC) 	8.49 360

Overall (AIC) 	2.77 6.84

Overall (BIC) 	8.38 330

The table shows the contributions to the Bayes factor B12 for a typical feed-

forward data set. The largest single contribution is the cost of coding the

parameters. The overall Bayes factors provide positive (AIC) and very

strong (BIC) evidence in favor of the true model.
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example of two simple models with hierarchically arranged

regions. These two models differed in their connectional structure

by the presence or absence of reciprocal connections. Specifically,

we used DCMs comprising three regions and three input variables

and generated 360 data points from the two models shown in Fig.

4. Model 1 had a unilateral forward structure and model 2 a

reciprocal architecture. We used the connectivity parameters shown

in the figure, hemodynamic parameters set to the prior expectation

and an interval between scans of TR = 2 s. The inputs u1, u2, and u3
are the boxcar functions shown in Fig. 5. These inputs are identical

to the input variables from the attention to visual motion analysis

described in a later section. The simulated time series were created

by integrating the state equations (Friston et al., 2003). We then

added observation noise to achieve an SNR of unity in the regions

receiving driving input and repeated this procedure to generate 10

data sets from each model structure.

For each data set we then fitted two models, one having forward

connections and the other reciprocal connections. We then com-

puted Bayes factors using the AIC and BIC approximations to the

model evidence. The results in Table 2 provide consistent evidence

(in the sense defined in the Making decisions section) in favor of

the correct model in all cases. The results in this table show

average Bayes factors where averaging took place in log-space

(e.g.,< log B12 >).

Table 3 shows a breakdown of the Bayes factor for a typical run

on simulated data from the model with feedforward connectivity.

The ‘relative cost’ S column gives the cost in bits of coding each

prediction or parameter error, and the overall cost is given by the

sum of the individual costs. The Bayes factor column shows the
Table 4

Comparing intrinsic connectivity

Source Model 2 vs. model 1

relative cost (bits)

Bayes

factor B21

R1 error 	24.8 2 � 107

R2 error 	6.94 123

R3 error 	0.81 1.75

Parameters (AIC) 2.89 0.14

Parameters (BIC) 8.49 0.003

Overall (AIC) 	29.66 8 � 108

Overall (BIC) 	24.06 2 � 106

The table shows contributions to the Bayes factor B21 for a typical

reciprocal data set, that is, model 2 is true. The largest single contribution to

the Bayes factor is the cost of coding the prediction errors. The overall

Bayes factors provide very strong evidence in favor of the true model.
corresponding components of the Bayes factor, given by 2	S, with

the overall value given by the product of individual components.

Any apparent discrepancy between individual entries and overall

values is because entries are only displayed to two decimal places.

Bayes factor components larger than 1 favor model 1. In the

remainder of this paper, there are several tables showing a

partitioning of Bayes factors that use this format.

Table 3 shows that the forward model is favored because the

number of bits required to code the errors is about the same, but

fewer bits are required to code the parameters. That is, the forward

model is equally accurate but more parsimonious.

Table 4 shows a breakdown of the Bayes factor for a typical run

on simulated data from the model with reciprocal connectivity.

Here, the reciprocal model is favored as it is more accurate,
Fig. 6. Comparing modulatory connectivity. Synthetic DCM models

comprising four regions: L1 and L2 in the ‘left hemisphere’ and R1 and

R2 in the ‘right hemisphere’. The networks have driving input entering the

‘lower’ areas L1 and R1, and an intrinsic connectivity comprising within-

hemisphere feed-forward connections and reciprocal lateral connections

between hemispheres. In model 1 (top panel), feed-forward connectivity is

modulated in the left hemisphere and in model 2 (bottom panel) feed-

forward connectivity is modulated in the right hemisphere.



Table 5

Comparing modulatory connectivity

Source Model 1 vs. model 2

relative cost (bits)

Bayes

factor B12

L1 error 	0.47 1.38

L2 error 	2.97 7.82

R1 error 	0.19 1.14

R2 error 0.49 0.71

Parameters (AIC) 0.00 1.00

Parameters (BIC) 0.00 1.00

Overall (AIC) 	3.13 8.74

Overall (BIC) 	3.13 8.74

Breakdown of contributions to the Bayes factor for model 1 with ‘left

hemisphere’ modulation vs. model 2 having ‘right hemisphere’ modulation

for a typical left hemisphere data set. The largest single contribution to the

Bayes factor is the increased model accuracy in region L2, where 2.97 fewer

bits are required to code the prediction errors. The overall Bayes factor of

8.74 provides positive evidence in favor of the left hemisphere hypothesis.

Because both network structures have the same number of connections, the

relative cost of parameters under both AIC and BIC is zero.
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especially in regions R1 and R2, that is, in the regions that receive

direct feedback.

Overall, these results demonstrate that Bayes factors can indeed

be used to compare models with different intrinsic connectivities.

Comparing modulatory connectivity

In this section, we use simulated data and a simple model of

hemispheric specialization (lateralization) to demonstrate the prac-

tical relevance of Bayes factors for comparing models with

different modulatory connectivity. Traditionally, lateralization has

often been envisaged to reflect differences in the local computa-

tional properties of homotopic areas in the two hemispheres.
Fig. 7. Attention data. fMRI time series (rough solid lines) from regions V1, V5, a

lines).
Recent studies have indicated, however, that asymmetries in

intra-hemispheric functional couplings may be an equally impor-

tant determinant of hemispheric specialization (McIntosh et al.,

1994; Stephan et al., 2003). This section demonstrates the ability of

DCM to correctly identify asymmetries of modulatory intra-hemi-

spheric connectivity despite the presence of reciprocal inter-hemi-

spheric connections between homotopic regions.

We generated 256 data points (TR = 2s) from model 1 shown in

the top panel of Fig. 6, where modulation of connectivity takes

place in the left hemisphere. We used the connectivity parameters

shown in the figure and hemodynamic parameters were set equal to

their prior expectation. The driving input u1 consisted of delta

functions with interstimulus intervals drawn from a uniform distri-

bution with minimum and maximum values of 2 and 8 s. The

modulatory input u2 consisted of a boxcar function with period 40 s.

The simulated time series were again created by integrating the

DCM state equations (Friston et al., 2003). We then added obser-

vation noise so as to achieve an SNR of unity in the region receiving

driving input. This procedure was repeated to generate 10 data sets.

For each data set, we then fitted two DCM models, model 1

assuming that connectivity is modulated in the left hemisphere and

model 2 assuming that it is modulated in the right. Deciding which

is the best model is not a trivial task as information can pass

between hemispheres via the lateral connections. Informally, how-

ever, one should be able to infer which model generated the data

for the following reason. Both models predict that L2 and R2

activity will be modulated indirectly by the contextual input u2. For

data generated from the left hemisphere model, L2 will be

modulated more than R2 (vice versa for the right hemisphere

model). Thus, if model 2 does a reasonable job of predicting R2

activity, it will necessarily do a poor job of predicting L2 activity

(and vice versa). Formally, the hypotheses embodied in the net-

works can be evaluated by fitting the models and computing the

Bayes factor B12. For our 10 data sets both AIC and BIC gave, on
nd SPC, and the corresponding estimates from DCM model 1 (smooth solid



Fig. 8. Attention models. In all models, photic stimulation enters V1 and the

motion variable modulates the connection from V1 to V5. Models 1, 2, and

3 have reciprocal and hierarchically organized intrinsic connectivity. They

differ in how attention modulates the connectivity to V5, with model 1

assuming modulation of the forward connection, model 2 assuming

modulation of the backward connection, and model 3 assumes both. Models

4 and 5 assume modulation of the forward connection, but have a purely

feed-forward intrinsic connectivity (model 4) or a fully connected intrinsic

architecture (model 5).
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average, B12 = 17 providing consistent evidence in favor of the

correct hypothesis. This same value would have resulted (but this

time for B21) had we fitted the models to right hemisphere data.

This is because model 2 is equivalent to model 1 after a relabeling

of regions.

Why did the Bayes factors favor the left hemisphere model?

The short answer is that it is the correct model! A more detailed

answer can be provided by showing the breakdown of the Bayes

factor in Table 5 that was computed for a typical run. This

breakdown shows clearly that the main reason model 1 is favored

is because it predicts activity in L2 more accurately. Model 2 does

a good job of predicting activity in R2 but a poor job in L2. The

AIC and BIC criteria produce the same Bayes factor because both

networks have the same number of connections. The models are

therefore compared solely by accuracy.

We also considered a model, model 3, with both left and right

modulatory connections. This was fitted to simulated data gener-

ated from model 1. For our 10 data sets, AIC gave, on average, a

Bayes factor B13 of 1.78 and BIC gave 10.50. Thus, the Bayes

factors tell us that, overall, we cannot be confident that the data

came from model 1. On exactly five data sets, however, we

obtained B13 > e, so in these five cases we would correctly

conclude that the data came from model 1. On the other five data

sets we would draw no conclusion. This gives an indication as to

the conservativeness of the ‘consistent’ evidence rule.

We then compared Bayes factors for data generated from model

3, where the modulatory effect was the same on both sides. For 10

data sets, AIC gave, on average, a Bayes factor B31 of 2.39 and

BIC gave 0.40. Thus, the Bayes factors tell us we cannot be

confident that the data came from model 3. The reason for this

uncertainty is that we are asking quite a subtle question—the

increase in percentage of signal variance explained by model 3

over model 1 is simply not large enough to produce consistent

Bayes factors.

Finally, to show the unambiguous nature of model selection in

the context of discriminable models, we generated data from a

fourth model where the modulatory effect on the left side was as

before, an increase in connection strength between L1 and L2 from

0.3 to 0.9 (mediated with an intrinsic connection of 0.3 and a

modulatory connection of 0.6), but the modulation on the right side

was a decrease in connection strength from 0.9 to 0.3 (mediated via

an intrinsic connection of 0.9 and a modulatory connection of

	0.6). Over 10 data sets AIC and BIC gave Bayes factors B41, on

average, of 2330 and 396 indicating strong and consistent evidence

in favor of the correct hypothesis.

Overall, these simulations show that Bayes factors can be used

to make inferences about modulatory connections. As predicted by

theory (see Bayes factors section), the sensitivity of the model

comparison test increases with larger differences in the number of

model parameters or increasing differential signal strength. Put

simply, models with greater structural or predictive differences are

easier to discriminate.

Attention to visual motion

In previous work, we have established that attention modu-

lates connectivity in a distributed system of cortical regions

mediating visual motion processing (Buchel and Friston, 1997;

Friston and Buchel, 2000). These findings were based on data

acquired using the following experimental paradigm. Subjects

viewed a computer screen that displayed either a fixation point,



Table 8

Attention data

Source Model 1 vs. model 3

relative cost (bits)

Bayes

factor B13

V1 error 	 0.01 1.01

V5 error 0.02 0.99

SPC error 	 0.05 1.04

Parameters (AIC) 	 1.44 2.72

Parameters (BIC) 	 4.25 18.97

Overall (AIC) 	 1.49 2.81

Overall (BIC) 	 4.29 19.62

Breakdown of contributions to the Bayes factor for model 1 vs. model 3.

The largest single contribution to the Bayes factor is the cost of coding the

parameters. The table indicates that both models are similarly accurate but

model 1 is more parsimonious. The overall Bayes factor B13 provides

consistent evidence in favor of the (solely) bottom-up model.

Table 6

Attention data—comparing modulatory connectivities

B12 B13 B32

AIC 3.56 2.81 1.27

BIC 3.56 19.62 0.18

Bayes factors provide consistent evidence in favor of the hypothesis

embodied in model 1, that attention modulates (solely) the bottom-up

connection from V1 to V5. Model 1 is preferred to models 2 and 3.
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stationary dots, or dots moving radially outward at a fixed

velocity. For the purpose of our analysis we can consider three

experimental variables. The ‘photic stimulation’ variable indicates

when dots were on the screen, the ‘motion’ variable indicates that

the dots were moving, and the ‘attention’ variable indicates that

the subject was attending to possible velocity changes. These are

the three input variables that we use in our DCM analyses and

are shown in Fig. 5.

In this paper, we model the activity in three regions, V1, V5,

and superior parietal cortex (SPC). The original 360-scan time

series were extracted from the data set of a single subject using a

local eigendecomposition and are shown in Fig. 7.

We initially set up three DCMs each embodying different

assumptions about how attention modulates connectivity between

V1 and V5. Model 1 assumes that attention modulates the forward

connection from V1 to V5, model 2 assumes that attention

modulates the backward connection from SPC to V5, and model

3 assumes attention modulates both connections. These models are

shown in Fig. 8. Each model assumes that the effect of motion is to

modulate the connection from V1 to V5 and uses the same

reciprocal hierarchical intrinsic connectivity. Later we will consider

models with different intrinsic connections.

We fitted the models and the Bayes factors are shown in Table

6. These show that the data provide consistent evidence in favor of

the hypothesis embodied in model 1, that attention modulates

solely the forward connection from V1 to V5.

We now lookmore closely at the comparison of model 1 tomodel

2. The estimated connection strengths of the attentional modulation

were 0.23 for the forward connection in model 1 and 0.55 for the

backward connection inmodel 2. The posterior probabilities of these

connections being greater than the threshold c = (log 2) / 4 (i.e., the

probabilities that the modulatory effects occur within 4 s—see

section 2.1.1 in Friston et al., 2003) are 0.78 and 0.97.

A breakdown of the Bayes factor B12 in Table 7 shows that the

reason model 1 is favored over model 2 is because it is more
Table 7

Attention data

Source Model 1 vs. model 2

relative cost (bits)

Bayes

factor B12

V1 error 7.32 0.01

V5 error 	0.77 1.70

SPC error 	8.38 333.36

Parameters (AIC) 0.00 1.00

Parameters (BIC) 0.00 1.00

Overall (AIC) 	1.83 3.56

Overall (BIC) 	1.83 3.56

Breakdown of contributions to the Bayes factor for model 1 vs. model 2.

The largest single contribution to the Bayes factor is the increased model

accuracy in region SPC, where 8.38 fewer bits are required to code the

prediction errors. The overall Bayes factor B12 of 3.56 provides consistent

evidence in favor of model 1.
accurate. In particular, it predicts SPC activity much more accu-

rately. Thus, although model 2 does show a significant modulation

of the SPC-V5 connection, the required change in its prediction of

SPC activity is sufficient to compromise the overall fit of the

model. If we assume models 1 and 2 are equally likely a priori,

then our posterior belief in model 1 is 0.78 (from 3.56/(3.56 + 1)).

Thus, model 1 is the favored model even though the effect of

attentional modulation is weaker.

This example makes an important point. Two models can only

be compared by computing the evidence for each model. It is not

sufficient to compare values of single connections. This is because

changing a single connection changes the overall network dynam-

ics and each hypothesis is assessed (in part) by how well it predicts

the data, and the relevant data are the activities in a distributed

network.

We now focus on model 3 that has both modulation of forward

and backward connections. Firstly, we make a statistical inference

to see if, within model 3, modulation of the forward connection is

larger than modulation of the backward connection. For these data,

the posterior distribution of estimated parameters tells us that this is

the case with probability 0.75. This is a different sort of inference

to that made above. Instead of inferring which is more likely,

modulation of a forward or backward connection, we are making

an inference about which effect is stronger when both are assumed

present.

However, this inference is contingent on the assumption that

model 3 is a good model. The Bayes factors in Table 6, however,

show that the data provide consistent evidence in favor of the

hypothesis embodied in model 1, that attention modulates only the

forward connection. Table 8 shows a breakdown of B13. Here the

dominant contribution to the Bayes factor is the increased param-

eter cost for model 3.

So far, our models have all assumed a reciprocal intrinsic

connectivity. We examine the validity of this assumption by also
Table 9

Attention data—comparing intrinsic connectivities

B14 B15

AIC 1 � 1020 0.06

BIC 1 � 1019 3.13

There is consistent evidence in favor of model 1 over model 4, but between

models 1 and 5, there is no consistent evidence either way.



Fig. 9. DCM models of category specificity. Models 1, 2, and 3 have reciprocal and hierarchically organized intrinsic connectivity. Model 1 has modulation of

the forward connection to MO, model 2 has modulation of the backward connection to MO, model 3 has both. Models 4 and 5 assume modulation of the

forward connection, but have a purely feed-forward intrinsic connectivity (model 4) or a fully connected intrinsic architecture (model 5).

Table 10

Visual object data—comparing modulatory connectivity

B12 B13 B32

AIC 7950 2.75 2890

BIC 7950 33.47 237

Bayes factors provide evidence in favor of the hypothesis embodied in

model 1, that the processing of faces modulates (solely) the bottom-up

connection from V3 to M0. Model 1 is preferred to models 2 and 3, and

model 3 is preferred to model 2.

W.D. Penny et al. / NeuroImage 22 (2004) 1157–1172 1169
fitting a model with purely forward connections (model 4) and a

model having a full intrinsic connectivity (model 5). These models

are otherwise identical to model 1 and are also shown in Fig. 8.

Table 9 shows Bayes factors of the fitted models that provide

consistent evidence favoring model 1 over model 4. But between

models 1 and 5, there is no consistent evidence either way. We can

therefore be confident that our assumption of reciprocally and

hierarchically organized intrinsic connectivity is a reasonable one.

Visual object categories

Functional imaging studies have reported the existence of

discrete cortical regions in the occipitotemporal cortex that re-

spond preferentially to different categories of visual object such as

faces, buildings, and letters. In previous work (Mechelli et al.,

2003), we have used DCM to explore whether such category-

specificity is the result of modulation of backward connections
from parietal areas or modulation of forward connections from

primary visual areas.

In this section, we focus on a single area in the mid-occipital

(MO) cortex that responded preferentially to images of faces. We

set up DCMs comprising three regions, V3, MO, and superior–

parietal cortex (SPC). Full descriptions of the experimental design,



Table 13

Visual object category data

Source Model 1 vs. model 4

relative cost (bits)

Bayes

factor B14

V3 error 	 8.10 274

MO error 	 2.97 7.83

SPC error 	 2.97 7.83

Parameters (AIC) 2.89 0.14

Parameters (BIC) 10.09 0.0009

Overall (AIC) 	 11.15 2280

Overall (BIC) 	 3.95 15.4

Breakdown of contributions to the Bayes factor for the DCM with

reciprocal and hierarchically organized intrinsic connectivity (model 1) vs.

the DCM with feed-forward intrinsic connectivity (model 4). The increased

accuracy of model 1 more than compensates for its lack of parsimony.

Table 11

Visual object data—comparing intrinsic connectivities

B14 B15

AIC 2280 0.01

BIC 15.4 2.00

Bayes factors provide evidence in favor of model 1 over model 4, but

between models 1 and 5, there is no consistent evidence either way.
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imaging acquisition, and extraction of regional time series are

available in Mechelli et al. (2003). Our analyses used the data from

‘subject 1’ and our regions are those used in the DCM analysis in

Fig. 1 of Mechelli et al. (2003). The time series consists of 1092

scans. The original data files can be obtained from the National

fMRI Data Center (http://www.fmridc.org) and their acquisition is

described in Ishai et al. (2000).

The aim of our analyses was to find out if the specificity of the

face-responsive area could be better attributed to increased con-

nectivity from V3 or from SPC. To this end we fitted three models

to the data that are shown in Fig. 9. These models postulate

modulation of the forward connection to MO (model 1), modula-

tion of the backward connection to MO (model 2), and modulation

of both connections (model 3). All three models assume a

reciprocal and hierarchically organized intrinsic connectivity. Later

we will look at models with different intrinsic connectivity. We

fitted the models, and the Bayes factors are shown in Table 10.

These provide evidence in favor of the hypothesis embodied in

model 1, that the processing of faces modulates only the forward

connection from V3 to MO.

We now turn to the assumption of reciprocal and hierarchically

organized intrinsic connectivity and test its validity by fitting a

model with purely feedforward connections (model 4) and full

intrinsic connectivity (model 5). These models are otherwise

identical to model 1. The Bayes factors of the fitted models are

shown in Table 11 and provide consistent evidence in favor of

model 1 over model 4. Between models 1 and 5, however, there is

no consistent evidence either way. We can therefore be content that

our assumption of reciprocal connectivity is sufficient.

We now look in more detail at two of the pairwise model

comparisons. Table 12 provides a breakdown of the Bayes factor

for model 1 vs. model 2. This shows that the largest contributions to

the Bayes factors are the better model fits in V3 and MO. Because

both models have the same number of connections, the relative BIC

and AIC parameter costs are zero. The models are therefore

compared solely from which is more accurate. Table 13 shows a
Table 12

Visual object category data

Source Model 1 vs. model 2

relative cost (bits)

Bayes

factor B12

V3 error 	 10.59 1545

MO error 	 6.01 64.6

SPC error 3.65 0.08

Parameters (AIC) 0.00 1.00

Parameters (BIC) 0.00 1.00

Overall (AIC) 	 12.96 7950

Overall (BIC) 	 12.96 7950

Breakdown of contributions to the Bayes factor for model 1 vs. model 2.

The largest contributions to the Bayes factor are the better model fits in V3

and MO. The overall Bayes factor B12 of 7950 provides very strong

evidence in favor of model 1.
breakdown of the Bayes factor for model 1 vs. model 4, indicating

that the increased accuracy of the model with reciprocal intrinsic

connectivity more than compensates for its lack of parsimony, with

respect to the model with purely forward connections.
Discussion

We have described Bayesian inference procedures in the

context of dynamic causal models. DCMs are used in the analysis

of effective connectivity, and posterior distributions can be used,

for example, to assess changes in effective connectivity caused by

experimental manipulation. These inferences, however, are contin-

gent on assumptions about the intrinsic and modulatory architec-

ture of the model, that is, which regions are connected to which

other regions and which inputs can modulate which connections.

To date, the specification of intrinsic connectivity has been

based on our knowledge, for example, of anatomical connectivity

in the Macaque. While this approach may be tenable for sensory

systems, it is more problematic for higher cognitive systems.

Moreover, even if we knew the anatomical connectivity, the

question would remain as to whether these connections were

relevant in a given functional context. The use of Bayes factors to

guide the choice of intrinsic connectivity is therefore of great

practical relevance. In this paper, we have shown how they can

be used, for example, to decide between feedforward, reciprocal,

and fully connected structures. We have also shown how Bayes

factors can be used to compare models with different modulatory

connectivity. This is important as it is the changes in connectivity

that are usually of primary scientific interest.

The use of Bayes factors for model comparison is somewhat

analogous to the use of F tests in the general linear model. Whereas t

tests are used to assess individual effects, F tests allow one to assess

the significance of a set of effects. Bayes factors play a similar role

but additionally allow inferences to be constrained by prior knowl-

edge. Moreover, it is possible to simultaneously entertain several

hypotheses and compare them using Bayesian evidence. Impor-

tantly, these hypotheses are not constrained to be nested.

In this paper, we have used AIC and BIC approximations to the

model evidence and defined a criterion of ‘consistent’ evidence on

which decisions can be based. This was motivated by the fact that

the AIC approximation is known to be biased towards complex

models and BIC to simpler models. In the future, we envisage

improved approximations, perhaps based on Laplace approxima-

tions where the prior variances are inferred using Empirical Bayes.

 http:\\www.fmridc.org 
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We are also aware of several improvements to the AIC criterion

(Bozdogan, 1987) incorporating finite sample corrections. These

would also change the criterion for consistent evidence.

Comparison of effectivity connectivity models has previously

been explored in the context of SEM by Bullmore et al. (2000).

This work has established the usefulness of such approaches for

comparing nested structural equation models that are most suitable

for the analysis of PET data. In our work, we compare DCM

models that are currently most suited for the analysis of fMRI data.

Moreover, the model comparison approaches we have explored

employ a Bayesian perspective enabling the comparison of non-

nested models.

Currently, we are using Bayesian model comparison over a

limited set of models defined by the modeller. This allows the user

to compare a handful of working hypotheses about the large-scale

organization of their neurocognitive system of interest. Future

work may develop automatic model search procedures. These

would embody standard Bayesian procedures whereby model

search proceeds by considering only those models in an ‘Occam

window’ (Raftery, 1995). Similar model search procedures have

been previously explored in the context of SEM by Bullmore et al.

(2000). Another future research avenue is to use Bayesian model

averaging (Hoeting et al., 1999), where instead of choosing the

‘best’ model, models are combined by using the evidence as a

weighting factor.

The combined use of Bayes factors and DCM provides us with

a formal method for evaluating competing scientific theories about

the forms of large-scale neural networks and the changes in them

that mediate perception and cognition.
Appendix A. Approximating the model evidence

A.1 . Laplace approximation

The model evidence is given by

pðyAmÞ ¼
Z

pðyAh;mÞpðh;mÞdh ð27Þ

This can be approximated using Laplace’s method

pðyAmÞLcpðyAmÞ

¼ ð2pÞ	p=2ACpA	1=2ð2pÞ	Ns=2ACeA	1=2IðhÞ ð28Þ

where

IðhÞ ¼
Z

exp 	 1

2
rðhÞTC	1

e rðhÞ 	 1

2
eðhÞTC	1

p eðhÞ

 �

dh ð29Þ

Substituting e(h) = (h 	 hMP ) + (hMP 	 hp) and r(h) = ( y 	
h(hMP)) + (h(hMP) 	 h(h)) into the above expression, and removing

terms not dependent on h from the integral, then gives

IðhÞ ¼
Z

exp 	 1

2
ðh 	 hMPÞTR	1

MPðh 	 hMPÞ

 �

dh

 �
ð30Þ

exp 	 1

2
rðhMPÞTC	1

e rðhMPÞ 	
1

2
eðhMPÞTC	1

p eðhMPÞ

 � �

ð31Þ
where the first factor is the normalizing term of the multivariate

Gaussian density. Hence

IðhÞ ¼ ð2pÞp=2ARMPA1=2exp 	 1

2
rðhMPÞTC	1

e rðhMPÞ



	 1

2
eðhMPÞTC	1

p eðhMPÞ
�

ð32Þ

Substituting this expression into Eq. (28) and taking logs gives

logpðyAmÞL ¼ 	 Ns

2
log2p 	 1

2
logACeA	 1

2
logACpA

þ 1

2
logARMPA	 1

2
rðhMPÞTC	1

e rðhMPÞ

	 1

2
eðhMPÞTC	1

p eðhMPÞ ð33Þ

When comparing the evidence for different models, we can ignore

the first term as it will be the same for all models. Dropping the

first term and rearranging gives

logpðyAmÞL ¼ AccuracyðmÞ 	 1

2
logACpAþ 1

2
logARMPA

	 1

2
eðhMPÞTC	1

p eðhMPÞ ð34Þ

where

AccuracyðmÞ ¼ 	 1

2
logACeA	 1

2
rðhMPÞTC	1

e rðhMPÞ ð35Þ

is the accuracy of model m.

A.2 . Bayesian information criterion

Substituting Eq. (32) into Eq. (28) gives

pðyAmÞL ¼ pðyAhMP;mÞpðhMPAmÞð2pÞp=2ARMPA1=2 ð36Þ

Taking logs gives

pðyAmÞL ¼ logpðyAhMP;mÞ þ logpðhMPAmÞ þ
p

2
log2p

þ 1

2
logARMPA ð37Þ

The dependence of the first three terms on the number of scans is

O(Ns), O(1), and O(1). For the fourth term entries in the posterior

covariance scale linearly with Ns
	1

lim
Ns!l

1

2
logARMPA ¼ 1

2
log

RMPð0Þ
Ns

����
����

¼ 	 p

2
logNs þ

1

2
logARMPð0ÞA ð38Þ

where RMP(0) is the posterior covariance based on Ns = 0 scans.

This last term therefore scales as O(1). Schwarz (1978) notes that

in the limit of large Ns, Eq. (37) therefore reduces to

BIC ¼ lim
Ns!l

logpðyAmÞL

¼ logpðyAhMP;mÞ 	
p

2
logNs ð39Þ

This can be rewritten as

BIC ¼ AccuracyðmÞ 	 p

2
logNs ð40Þ
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