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Abstract
Computational psychiatry is a rapidly emerging field that uses model-based quantities to infer the behavioral and
neuronal abnormalities that underlie psychopathology. If successful, this approach promises key insights into (path-
ological) brain function as well as a more mechanistic and quantitative approach to psychiatric nosology—structuring
therapeutic interventions and predicting response and relapse. The basic procedure in computational psychiatry is to
build a computational model that formalizes a behavioral or neuronal process. Measured behavioral (or neuronal)
responses are then used to infer the model parameters of a single subject or a group of subjects. Here, we provide an
illustrative overview over this process, starting from the modeling of choice behavior in a specific task, simulating data,
and then inverting that model to estimate group effects. Finally, we illustrate cross-validation to assess whether
between-subject variables (e.g., diagnosis) can be recovered successfully. Our worked example uses a simple
two-step maze task and a model of choice behavior based on (active) inference and Markov decision processes. The
procedural steps and routines we illustrate are not restricted to a specific field of research or particular computational
model but can, in principle, be applied in many domains of computational psychiatry.

Key words: active inference; computational psychiatry; generative model; Markov decision process; model
inversion

Introduction
Recent advances in computational neuroscience—and

the lack of a mechanistic classification system in mental
disorders (Stephan et al., 2015)—have motivated the ap-
plication of computational models in clinical research.

This has led to the emergence of a field of research called
computational psychiatry, which has attracted much re-
cent interest (Friston et al., 2014b; Stephan and Mathys,
2014; Wang and Krystal, 2014; Huys et al., 2015). Its aim
is to use computational models of behavior or neuronal
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Significance Statement

We provide an overview over the process of using formal models to understand psychiatric conditions,
which is central in the emerging research field of “computational psychiatry.” This approach promises key
insights into both healthy and pathological brain function as well as a more mechanistic understanding of
psychiatric nosology, which may have important consequences for therapeutic interventions or predicting
response and relapse. In a worked example, we discuss the generic aspects of using a computational
model to formalize a task, simulating data and estimating parameters, as well as inferring group effects
between patients and healthy control subjects. We also provide routines that can be used for these steps
and are freely available in the academic software SPM.

Methods/New Tools

July/August 2016, 3(4) e0049-16.2016 1–18

http://orcid.org/0000-0001-7984-8909
http://dx.doi.org/10.1523/ENEURO.0049-16.2016


function to infer the hidden causes of measurable quantities,
such as symptoms, signs, and neuroimaging or psycho-
physical responses. In consequence, this approach prom-
ises new insights into the computational mechanisms of
certain pathologies, which would otherwise be hidden, when
assessing the observations alone.

This tutorial addresses a particular but important aspect of
computational psychiatry; namely, how to characterize indi-
viduals in terms of their computational phenotypes. In other
words, it describes how to quantify the beliefs and prefer-
ences of an individual—within a formal framework—by fit-
ting their choice behavior to a computational model. Our
focus is on a particular sequence of analyses that is sup-
ported by routines in the SPM software. These routines have
been written in a way that they should be applicable to any
choice or decision tasks that can be modeled in terms of
(partially observable) Markov decision processes (Toussaint
et al., 2006; Alagoz et al., 2010; Rao, 2010; FitzGerald et al.,
2015; see below). The purpose of this note is to describe the
overall structure of the analyses and the functionality of a
few key (Matlab) routines that can be used to analyze the
behavior of subjects in a relatively straightforward and effi-
cient fashion. An overview of these routines is provided in
Figure 1 and the software notes below.
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Figure 1. A schematic overview of the analysis stream underlying the treatment of computational psychiatry in this article. The basic
procedure involves specifying a model of behavior cast in terms of a Markov decision process (MDP). Under the assumption that
choices are made in an approximately Bayes optimal fashion using active (Bayesian) inference, this model is sufficient to predict
behavior. If we supplement the model specification (MDP) with empirical choice behavior (Data), we can estimate the prior beliefs
responsible for those choices. If this is repeated for a series of subjects, the ensuing priors can then be analyzed in a random-effects
(PEB) model to make inferences about group effects or to perform cross-validation. Furthermore, physiological and behavioral
predictions can be used as expansion variables for fMRI or other neuroimaging time series (bottom left). The routines in the boxes refer
to MATLAB routines that are available in the academic software SPM. These routines are sufficient to both simulate behavioral
responses and analyze empirical or observed choice behaviour, at both the within-subject and between-subject levels. The final
routine also enables cross-validation and predictions about a new subject’s prior beliefs using a leave-one-out scheme that may be
useful for establishing the predictive validity of any models that are considered.
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Characterizing choice behavior in terms of a formal
model represents a subtle challenge, especially under
active inference models of behavior (Friston et al., 2011,
2015a). This is because it is generally assumed that sub-
jects make decisions based on a generative model of the
task at hand and behave in an approximately Bayesian
way by making bounded rational choices (Berkes et al.,
2011). Generative models provide a probabilistic mapping
from hidden states or parameters to observations. In
other words, a generative model specifies how conse-
quences (i.e., observed outcomes) are generated from
their causes (i.e., unobserved or hidden states and pa-
rameters). When modeling behavior under a generative
model, the (objective) model includes the (subjective)
model we assume is used by each subject (we provide a
worked example of this in the following sections). This
means that fitting choice behavior becomes a meta-
Bayesian problem, in which we are trying to infer the
beliefs adopted by a subject based on our beliefs about
this (active) inference process (Daunizeau et al., 2010).
Therefore, under the perspective of (active) Bayesian in-
ference, the only things one can infer about a subject are
their prior beliefs (Houlsby et al., 2013). In other schemes,
for example normative economic models or reinforcement
learning, prior expectations would correspond to key
model parameters, such as temporal discounting or the
sensitivity to rewards. In turn, this means that the differ-
ence between one subject and another has to be cast in
terms of their generative models, which can always be
formulated as prior beliefs or, when their priors pertain to
the parameters of probability distributions, hyperpriors.
Crucially, understanding individual behavior in terms of
individual (subjective) generative models of a task adds an
additional hypothesis space for investigating individual
and group differences, and speaks to the idea of under-
standing pathological behavior in terms of pathological
models of (i.e., abnormal prior beliefs about) the world
(Beck et al., 2012; Dayan, 2014; Schwartenbeck et al.,
2015c). In what follows, we will illustrate this general
principle using a particular example (and simulated data).
The end point of this analysis will be a characterization of
single subjects (and group differences) in terms of (hyper)
priors encoding uncertainty or confidence about choice
behavior. However, the same procedure can be applied to
any prior belief that shapes an individual’s response to
their changing world.

The formal approach
Formally, this approach rests on (both subjective and objec-
tive) generative models. For the subjective generative model,
these observations are experimental outcomes or cues ob-
served by a subject, while for the objective model, the
outcomes would be the subject’s responses or choices. In
statistical terms, generative models provide a likelihood
function, P�y��, m�, of data y given a set of parameters �
and the model structure m, as well as a prior over parame-
ters, P���m�. Crucially, one can invert this model using
Bayes rule to infer the most likely parameter values (hidden
states) causing observed data, as follows:

P(y��, m), P(��m)

P(y�m)
� P(��y, m).

Here, P�y�m� refers to the evidence or marginal likeli-
hood of the model, which can be obtained by integrating
or marginalizing out � in the numerator, as follows:

P(y�m) � � P(y��, m)· P(��m)d�.

Usually, this integral cannot be solved analytically (ex-
actly) but has to be approximated, for example through
heuristics like the Akaike/Bayesian information criterion or
more refined but computationally more expensive solu-
tions, such as sampling or variational methods (Attias,
2000; Beal, 2003; Bishop, 2006).

In the following, we will illustrate the use of generative
models in computational phenotyping and focus on the
crucial steps in (1) specifying the model, (2) using the
model to simulate or generate data, (3) model inversion or
fitting to estimate subject-specific parameters, and (4)
subsequent inference about between-subject or group
effects using hierarchical or empirical Bayes: for example,
comparing a group of healthy control subjects to a patient
group. We will use a simple decision-making task to
illustrate these processes and use a recently proposed
computational model of behavior, which casts decision-
making as a Markov decision process based on (active)
Bayesian inference (Friston et al., 2013; Friston et al.,
2015). The details of the task and computational model
are not of central importance and are discussed else-
where (Friston et al., 2015a). Here, the model serves to
illustrate the typical procedures in computational ap-
proaches to psychiatry. When appropriate, we will refer
explicitly to Matlab routines that implement each step.
These routines use (variational) procedures for Bayesian
model inversion and comparison. They have been devel-
oped over decades as part of the SPM software, and have
been applied extensively in the modeling of neuroimaging
and other data. The key routines called on in this article
are described in the software notes below.

Model specification
Figure 1 provides an overview of the procedures we will
be illustrating. Usually, one starts by developing and op-
timizing the task paradigm. Clearly, to describe a sub-
ject’s response formally, it is necessary to specify a
subjective generative model that can predict a subject’s
responses. For experimental paradigms, it is often con-
venient to use discrete state–space models (i.e., partially
observable Markov decision processes), in which various
cues and choices can be labeled as discrete outcomes.
We will illustrate this sort of model using a relatively
simple two-step maze task.

An active inference model of epistemic foraging
In the following, we introduce the ingredients for casting a
decision-making or planning task as an active Bayesian
inference. Note that this treatment serves as an illustration
for the general steps in computational phenotyping, which
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do not depend on the use of a particular computational or
normative model. In practice, one often wants to compare
different variants of computational models of choice be-
havior, such as (Bayesian) inference and (reinforcement)
learning models (Sutton and Barto, 1998), which we dis-
cuss below. In fact, the active inference routine we pres-
ent here allows one to perform these formal comparisons,
which are the subject of current research (Friston et al.,
2009; Mathys et al., 2011; Schwartenbeck et al., 2015b).

For our worked example, we will use a task that requires
both exploratory (epistemic) and exploitative behavior
(Friston et al., 2015a). In brief, in this task a subject has to
choose whether to sample the left or right arm of a

T-shaped maze to obtain a reward or a cue. The rewards
are in the upper arms, while the cue is in the lower arm.
This cue indicates the location of the reward with high
validity (Fig. 2A). Crucially, the left and the right arm of the
maze are absorbing states, which means that the agent
has to stick with its choice. Therefore, in the absence of
any prior knowledge, the optimal policy (i.e., a sequence
of actions) involves first sampling the cue and then se-
lecting the reward location indicated by the cue. While this
seems like a very simple task, it captures interesting
aspects of behavior such as planning and a trade-off
between exploration (i.e., sampling the cue) and exploita-
tion (i.e., moving to the arm that is likely to contain a

Figure 2. A, Task: we used a simple two-step maze task for our simulations, where a subject starts in the middle of a T-shaped maze
and has to decide whether to sample the left or right arm, knowing that one of the two arms will contain a reward but it can sample
only one of them (i.e., the arms are absorbing states). Alternatively, the subject could sample a cue at the bottom of the maze, which
will tell her which arm to sample. B, State space: Here, the subject has four different control states or actions available: she can move
to the middle location, the left or the right arm or the cue location. Based on these control states, we can specify the hidden states,
which are all possible states that a subject can visit in a task and often are only partially observable. In this task, the hidden state
comprises the location � the context (reward left or right), resulting in 4 � 2 � 8 different hidden states. Finally, we have to specify
the possible outcomes or observations that an agent can make. Here, the subject can find itself in the middle location, in the left or
right arm with or without obtaining a reward or at the cue location.
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reward). As such, it can be easily extended to model more
complex types of choice problems.

The first step is to specify the (subjective) generative
model of this task. These sorts of problems can be mod-
eled efficiently as partially observable Markov decision
processes, where the transition probabilities are deter-
mined by the current action and state, but not by the
history of previous states (see below). In the context of
active inference, the specification of the generative model
for a Markov decision process is based on three matrices,
called A, B, and C. These describe the mapping from
hidden states to outcomes, the transition probabilities
and the preferences (expectations) over outcomes, re-
spectively. The specification of these matrices depends
on the state space of the task (Fig. 2B). In our example,
the agent can be in one of eight possible hidden states
that are determined by the agent’s location (middle, bot-
tom, left arm, or right arm) and context (cue indicates the
left or right arm).

As the name implies, hidden states are usually not fully
(but only partially) observable and have to be inferred
based on observations. This motivates the A-matrix,
which maps from hidden states to observations (outcome
states; i.e., states that the subject can observe). Here, we
can differentiate seven different observable states (middle
position, left arm rewarded or unrewarded, right arm re-
warded or unrewarded, cue location indicating to go left
or right; Fig. 2B); thus, the A-matrix is a 7 � 8 matrix (Fig.
3A). The A-matrix accounts for any partially observable
aspect of a Markov decision process, where this mapping
becomes an identity matrix if all states are fully observable
(i.e., if there is no uncertainty about which hidden state
caused an observation).

Second, the B-matrix encodes the transition probabili-
ties in a decision process (i.e. the probability of the next
hidden state contingent on the current hidden state and
the action taken by the agent; Fig. 3B, illustration of the
transition probabilities in our task). These transition prob-
abilities are a particular feature of Markov decision pro-
cesses, because they depend only on the current state
(and action), not on previous states. This is called the
Markov or “memory-less” property. Finally, one has to
specify the agent’s preferences over outcomes states
(observations), which are encoded in the C-vector. Pref-
erences over outcomes are (prior) expectations, which
can be based on task instructions or, in the context of
economic decision-making or reinforcement learning, util-
ity or reward (or any combination of these).

From the perspective of active inference, the preferred
(desired) states are the states that the subject expects to
find itself in. Note that casting an agent’s preferences in
terms of prior expectations does not imply that the con-
cept of reward is meaningless; rather, the notion of a
reward is absorbed into an agent’s expectations, which
guide its inferences about policies. Therefore, a Bayes
optimal subject will infer or select policies that bring about
expected or preferred states. This inference is modeled
by Bayesian updates that accumulate evidence to opti-
mize posterior beliefs about hidden states of the world
and the current policy being enacted. Mathematically, this

can be expressed as a minimization of variational free
energy (as an upper bound on surprise; see below). Be-
cause variational free energy is an approximation to
negative Bayesian model evidence, belief updating to
minimize free energy for surprise is exactly the same as
maximizing model evidence. This Bayes optimal inference
ensures that subjects obtain the outcomes they expect
(i.e., desire). Equivalently, they will avoid unexpected (i.e.,
undesired) outcomes because they are surprising. The
key quantities that endow behavior with a purposeful,
goal-directed aspect are the prior preferences that nu-
ance the selection of policies. These preferences are
generally treated as free parameters that can be esti-
mated through model inversion, as we will see below.

For a full discussion of the task described above and
the specifics of casting choice behavior as an active
inferential Markov decision process, please see (Friston
et al., 2013; Friston et al., 2015a). Having said this, the
particular details of this paradigm are not terribly impor-
tant. The important thing to note is that, in principle, nearly
every experimental paradigm can be specified with two
sets of matrices (A and B), while every subject can be
characterized in terms of their preferences (C). Practically
speaking, the key challenge is not to specify these matri-
ces; but, the greatest challenge is to understand and
define the hidden state space implicit in the paradigm (in
other words, the states in which these matrices operate).

Simulating data
Having specified the subjective generative model for this
task, we can now use the model to simulate or generate
choice behavior. While eventually one will use real data,
simulating data is useful to assess whether the generative
model of a task produces sensible behavior. Once any
counterintuitive behavior has been resolved, one can then
use simulations to optimize the design parameters (or
state space) that will be used empirically as the subjective
model.

To simulate choices, we need to specify specific values
for the priors and hyperpriors of the generative model,
which we want to recover when working with real data
(see Model inversion, below). In our case, we need to
specify the following two parameters: the preferences
(expectations) over outcomes and a hyperprior on the
confidence or precision of beliefs about policies. The
preferences over outcomes simply determine the desir-
ability of each observable (outcome) state. For our simu-
lations, we have assigned a high value to outcomes in
which the agent obtains a reward (�4), a low value for
outcome states in which the agent does not obtain a
reward and is trapped in an absorbing state (�4), and a
medium value for the remaining outcomes, after which it is
still possible to obtain a reward later (0; Fig. 3C). Because
these expectations are defined in log-space, this can be
understood as the subject’s (prior) belief that obtaining a
reward is exp�4� � 55 times more likely than ending up in
a “neutral” state �exp�0� � 1�. In addition, we can specify
a hyperprior on precision. Precision ���

reflects an agent’s stochasticity or goal directedness in
choice behavior but, crucially, itself has a Bayes-optimal
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Figure 3. Generative model. A, The A-matrix maps from hidden states to observable outcome states (resulting in a 7 � 8 matrix).
There is a deterministic mapping when the subject is either in the middle position (simply observing that she is in the middle) or at
the cue location (simply observing that she is at the cue location where the cue indicates either left or right). However, when the
subject is in the left or right arm, there is a probabilistic mapping to a rewarded and an unrewarded outcome. For example, if the
subject is in the left arm and the cue indicated is in the left arm (third column), there is a high probability, p, of a reward, whereas there
is a low probability q � 1 � p of no reward. B, The B-matrix encodes the transition probabilities (i.e. the mapping from the current
hidden state to the next hidden state contingent on the action taken by the agent). Thus, we need as many B-matrices as there are
actions available (four in this example). Illustrated here is the B-matrix for a move to the left arm. We see that the action never changes
the context, but (deterministically) does change the location, by always bringing it to the left arm, except when starting from an
absorbing state (right arm). C, Finally, we have to specify the preferences over outcome states in a C-vector. Here, the subject strongly
prefers ending up in a reward state and strongly dislikes ending up in a left or right arm with no reward, whereas it is somewhat
indifferent about the “intermediate” states. Note that these preferences are (prior) beliefs or expectations; for example, the agent
beliefs that a rewarding state is exp �4� � 55 times more likely than an “intermediate” state [exp(0) � 1].
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solution that can be inferred on a trial-by-trial basis. The
importance of precision in decision processes and its
putative neuronal implementation are discussed in detail
elsewhere (Friston et al., 2014a; Schwartenbeck et al.,
2015a). In brief, the values of policies are scored as
variational free energies, which follow a Gibbs distribu-
tion. Precision is the inverse temperature of this distribu-
tion and itself is parameterized by a � distribution with a
scale ��� and rate ��� hyperparameter. Thus, precision
plays the same role as an inverse temperature in classic
softmax choice rules, with the difference that it is contin-
uously optimized. For our simulations, we have set � and
� to a value of 2, resulting in an expected value for
(inverse) precision of � � 1. Hyperpriors on precision are
of great importance when recovering the parameters
based on observed behavior and may play a central role in
psychiatry, as discussed below.

Finally, we need to specify initial states for each trial in
the experiment (i.e., the state from which the subject
starts navigating through the maze). In our simulations,
the initial (hidden) state of every trial is set to the middle
location and (randomly) to one of the two contexts (reward
on the left or right), where the entire experiment com-
prises 128 trials. Details of the model specification and
simulation (and the steps below) can be found in the DEM
toolbox of the academic software SPM12 (Wellcome
Trust Centre for Neuroimaging, London, UK, http://www-
.fil.ion.ucl.ac.uk/spm) under the option “behavioral mod-
eling.”

Having specified the generative model, we can now use
the function spm_MDP_VB to simulate behavior. This
routine provides solutions of behavior based on active
inference, such that agents believe they will minimize
expected free energy. Expected free energy can be de-
composed into the Kullback–Leibler (KL) divergence
between predicted and preferred outcomes plus the ex-
pected surprise (uncertainty) about future outcomes.
Therefore, minimizing expected free energy implicitly
maximizes expected utility or preferred outcomes in a
risk-sensitive fashion (compare with KL control), while
resolving ambiguity. This active inference scheme is
based on the following three variational update equations:
agents are assumed to perform within-trial inference on
current states, actions, and (expected) precision. In addi-
tion to these updates, the parameters of the generative
model are updated between trials (i.e., learned). Details of
the model and variational Bayesian updates can be found
in the study by Friston et al. (2015a), and the output of
these simulations can be found in Figure 4A for a single
trial and in Figure 4B for the entire experiment.

These simulated responses (and other electrophysio-
logical responses not considered in this article) can now
be used to verify the efficiency of the paradigm and its
basic behavior. One can also assess the sensitivity of
simulated behavior to variations in preferences and prior
precision. The sensitivity determines the efficiency with
which a subject’s preferences and hyperpriors can be
estimated. We now turn to this estimation in terms of
model inversion.

Model inversion
We have described the first two steps of computational
modeling; namely, translating a particular paradigm into a
generative model and simulating data by exploiting the abil-
ity of generative models to simulate or generate data. In
these simulations, we used a specific model that casts
decision-making as a Markov decision process based on
active inference. While recent work has highlighted the role
of deficient decision processes in psychiatry (Montague
et al., 2012; Hauser et al., 2014; Huys et al., 2015), the
central prerequisite of defining a generative model for a task
generalizes to all applications in computational psychiatry.

We can now turn to the inversion of the generative model
to recover its parameters, based on observed (or in our case
simulated) behavior. This is an important step in empirical
research, because the aim of computational psychiatry is to
characterize psychopathology in a quantitative and compu-
tationally meaningful fashion. In other words, we want to
explain people’s behavior in terms of a specific parameter-
ization of a (subjective) generative model.

A common approach is to compute maximum a poste-
riori (MAP) estimates of parameters obtained by inverting
an objective generative model. As described above, a
generative model is a mapping from hidden parameters to
observed data. Thus, by inverting the model one can map
from observations to hidden parameters, resulting in a
posterior distribution over the most likely (MAP) parame-
ters contingent on the model and observed data. To do
so, one has to decide on how to approximate the model
evidence or marginal likelihood. Here, we will use (nega-
tive) variational free energy as a proxy for the log-
evidence of a model. The log-model evidence can be
expressed as follows:

In P(y | m) � DKL[q(�) | | ]P(��y, m)] � F(q(�), y) ,

where the first term is the KL divergence between the true
posterior and an approximate posterior, which has a lower
bound of zero, and thus makes the (negative) variational free
energy in the second term a lower bound of the (negative)
log-model evidence (which is at most zero). It is thus suffi-
cient to minimize free energy to maximize the log-evidence of
the model itself. When fitting subject-specific choices, the
data at the observed choices and the active inference
scheme cited above provide a likelihood model. The likeli-
hood is the probability of obtaining a particular sequence of
choices, given a subject’s preferences and hyperpriors.
Model inversion corresponds to estimating the preferences
and hyperpriors, given an observed sequence of choices.

To do this model inversion, one can use the routine
spm_dcm_mdp, which inverts an objective generative
model given the subjective model, observed states, and
responses of a subject. This is made particularly easy
because the subjective model provides the probability of
various choices or actions from which the subject selects
behavior. We can now simply integrate or solve the active
inference scheme using the actual outcomes observed
empirically and evaluate the probability of the ensuing
choices. To complete the objective generative model, we
only need to specify priors over the unknown model pa-
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rameters. In what follows, we use fairly uninformative
shrinkage priors. Shrinkage generally refers to any regu-
larization method in statistics that prevents overfitting (but
see Bishop, 2006, page 10). In particular, shrinkage is
inherent in Bayesian inference due to the use of priors,
which “shrink” the parameter estimates toward the prior
mean, and thus preclude overfitting. In our case, we used
priors with a mean of 0 and a variance of 1/16, thus inducing
shrinkage toward 0. These priors can be changed in the
spm_dcm_mdp.m script, to specify any prior constraints on,
or knowledge about, the parameters that are estimated
(e.g., time constants that fall in natural ranges). We will
see later that priors can themselves be optimized, using
Bayesian model comparison (BMC). This follows because

any model is defined in terms of its (shrinkage) priors.
Technically, model inversion uses a standard (Newton
method) gradient ascent on variational free energy (in
which the curvature or Hessian is estimated numerically).
Practically, this involves specifying the (MDP) model used
to explain the subject’s behavior, the observed outcomes,
and their associated choices or actions (and objective
priors on the unknown subjective model parameters).
These quantities are specified as fields in a Matlab struc-
ture usually called DCM (for dynamic causal model).

Figure 5 shows the output of this routine when applied
to our simulated data. This provides estimates of the
preferences over outcomes and the hyperprior � on pre-
cision. Here, the estimation converges at the 13th itera-

Figure 4. Data simulation using the routine spm_MDP_VB. A, A simulated example trial, where the left top panel shows the hidden
states, the right top panel shows the inferred actions, the middle panels show the inference on policies (i.e., the possible sequences
of actions), the bottom left panel shows the preferences over outcome states (c-vector), and the bottom right panel shows the
expected precision, which could be encoded by dopamine (Friston et al., n.d.). In this trial, the subject starts in the middle position
where the reward is (most likely) on the right arm. She then makes a selection to sample the cue and, finally, moves to the right arm,
as indicated by the cue (darker colors reflect higher posterior probabilities). B, Overview of a simulated experiment comprising 128
trials. The first panel shows the inferred policies (black regions) and initial states (shown as colored circles: red circles, reward is
located at the right arm; blue circles, reward is located at the left arm) at every given trial. The second panel shows estimated reaction
times (cyan dots), outcome states (colored circles), and the value of those outcomes (black bars). Note that the value of outcomes
is expressed in terms of an agent’s (expected) utility, which is defined as the logarithm of an agent’s prior expectations. Thus, the
utility of an outcome is at most 0 [� log(1)]. Reaction times reflect the choice conflict at any given trial and are simulated by using the
time it takes Matlab to simulate inference and subsequent choice in any given trial (using the tic-toc function in Matlab). The third and
fourth panels show simulated event-related potentials for hidden state estimation and expected precision, respectively. The specifics
of these simulations are discussed in detail elsewhere (Friston et al., 2016). Finally, panels five and six illustrate learning and habit
formation. Our simulations did not include any learning or habitual responses.
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tion, and provides the trajectory of the two parameters as
well as their conditional expectations and posterior devi-
ations. The inversion of simulated data can also be helpful
to ensure that the subjective model can be inverted prior
to testing subjects or patients. For example, one can
simulate how many trials are necessary to recover param-
eters with sufficient confidence. An example of this is
shown in Figure 6A for the hyperprior on precision.

Importantly, there is usually more than one free param-
eter in a subject’s generative model, and these parame-
ters could have similar effects on behavior. One can use
intuitions about the effects of two parameters on re-
sponse variables and use simulations to test for any
similarity and any ensuing conditional dependencies. An
efficient parameterization (or experimental design) would

usually suppress conditional dependencies and therefore
make the parameter estimation more efficient. In our exam-
ple, we treated the hyperprior on precision and the prefer-
ences over outcomes as free parameters, where the former
accounts for an agent’s stochasticity in behavior and the
latter controls the agent’s preferences for different states.
Thus, these two parameters control distinct aspects of ob-
servable behavior and can be estimated relatively efficiently.
Any conditional dependencies among parameters can be
assessed (post hoc) in terms of their shared variance; for
example, by assessing their posterior covariance.

Inferring group effects
Finally, having described the specification of the genera-
tive model and model inversion, we can now turn to

Figure 5. Model inversion, as implemented by the routine spm_dcm_mdp, is based on simulated behavior. In this routine, (negative)
variational free energy as a lower bound of log-model evidence is maximized and converges after the 13th iteration (top right). The
trajectory of two estimated parameters in parameter space is provided (top left) as well as their final conditional estimates (bottom left)
and their posterior deviation from the prior value (bottom right). The black bars on the bottom right show the true values, while the
gray bars show the conditional estimates, illustrating a characteristic shrinkage toward the prior mean.
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inference about between-subject or group effects. As out-
lined above, when casting decision-making as a Markov
decision process based on active inference, a key role is
played by precision, which determines the confidence
that subjects place in their beliefs about choices. Further-
more, it has been previously suggested that precision
might be encoded by neuromodulators, in particular do-
pamine (Friston et al., 2012; Friston et al., 2014a; FitzGer-
ald et al., 2015; Schwartenbeck et al., 2015a), but also
acetylcholine (Moran et al., 2013). Therefore, precision
might be central for understanding certain pathologies,
such as psychosis, obsessive–compulsive disorder, or
addiction (Adams et al., 2013; Schwartenbeck et al.,
2015c; Hauser et al., 2016).

We simulated a group difference in precision by repeating
the model specification, data simulation, and model inver-
sion steps described above for two groups of eight subjects
each; where, crucially, we introduced a difference in the
hyperprior on precision (of one-quarter) between the two
groups and an intersubject variability with a log precision of
four (SD, 0.135). The result of the model inversion for each
subject is illustrated in Figure 6B in terms of real and esti-
mated subject-specific hyperpriors. These results immedi-
ately indicate of a group effect in this parameter that is
further evidenced by a significant difference between the
estimates in the two groups �t � 6.627, p 	 0.001�. Notice
that inferences about group effects call on a model of
between-subject differences. In Bayesian terms, these mod-
els are called hierarchical models or empirical Bayesian
models and are the Bayesian equivalent of (random-effects)
ANOVAs, with between-subject and within-subject effects.
A full random-effects analysis can be implemented using
parametric empirical Bayes (PEB) implemented for nonlinear

models of the sort we are dealing with here (for details, see
Efron and Morris, 1973; Friston et al., 2015b; Friston et al.,
2015c).

The Matlab routine to directly assess the group effect is
spm_dcm_peb. In brief, this routine uses hierarchical em-
pirical Bayes for second-level group inversion based on a
design matrix modeling group effects. In this case, the
between-subject model (or design matrix) contained two
explanatory variables modeling a group mean and a group
difference, respectively. This is the between-subject model
X in Figure 1 (for details, see Friston et al., 2015b,c; for a
reproducibility study using this approach, see Litvak et al.,
2015).

Figure 7A shows the output of Bayesian model com-
parison, which can be understood as the posterior evi-
dence that there is a group difference in the full model
(i.e., a group mean and difference) or in a reduced model
(i.e. only one or no effects). In Figure 7A (top right), we find
that the models with a group mean and difference and
models with just a group difference have the highest
posterior evidence (with a posterior probability that is
slightly � 0.5 and �0.5, respectively). Figure 7B shows
the corresponding parameter estimates (the group mean
results are shown on the left, and the group differences
are shown on the right). Here, Figure 7B (top right) shows
that the group difference of one-quarter is recovered
accurately. Note that while these results correspond to
the result obtained by a simple t test, using this routine for
Bayesian model comparison offers more flexibility and
provides more information than standard parametric ap-
proaches. One obvious difference, in relation to classic
inference, is the possibility of assessing the posterior
evidence for the null hypothesis (i.e., evidence that there

Figure 6. A, Conditional estimate and confidence interval for the hyperprior on precision (�) as a function of the number of trials in
a simulated experiment. B, True and estimated subject-specific parameters, following model inversion for 16 subjects with a group
effect in the hyperprior (�). The two groups can be seen as two clusters along the diagonal.
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is no difference between groups) and the posterior esti-
mate of the effect size for the group difference. For ex-
ample, if we repeat the above simulation with a group
difference of zero, we obtain a high posterior probability
for the model with no mean and group differences � �
0.7� and the models that assume a group difference scor-
ing a posterior probability of �0.1, whereas a nonsignifi-
cant t test would only provide inconclusive results.

While this empirical Bayesian procedure is very useful
for inferring group differences within a model, in practice,
researchers are also interested in comparing different
models of the same (choice response) data. For example,
although we have illustrated computational phenotyping
based on active inference, other models that are used in
computational neuroscience (and psychiatry) are based
on biophysical neural network models or reinforcement
learning (for recent review, see Huys et al., 2016). Com-
paring different models of a task, such as inference and

(reinforcement) learning models, is necessary to identify
which computational framework best explains observed
behavior. This usually rests on some form of Bayesian
model comparison (Stephan et al., 2009). In the present
setting, competing models are compared in terms of their
model evidence, as scored by variational free energy
computed during model inversion (at the within-subject
level or at the between-subject level using spm_dcm_
peb). This has been shown to outperform alternative ap-
proximations to model evidence, such as the Akaike and
Bayesian information criteria (Penny, 2012). It is possible
to perform such model comparisons within the active
inference toolbox; for example, by comparing active in-
ference (surprise minimization) to classic expected utility
theory (Schwartenbeck et al., 2015a,b).

Furthermore, one might also be interested in formal
model comparisons that entertain different hidden state
spaces underlying the (subjective) generative models

Figure 7. Hierarchical empirical Bayesian inference on group effects using the function spm_dcm_peb. A, Results of Bayesian model
comparison (reduction) to infer whether the full model (with both group mean and group differences) or a reduced (nested) model
(bottom left) provides a better explanation for the data. These results indicate high posterior evidence for a model with a group
difference, with slightly less evidence for the full model, which also includes a group mean effect (i.e., a deviation from the group prior
mean; top panels). Middle panels show the maximum a posteriori estimates of the mean and group effects for the full and reduced
models. B, Estimated (gray bars) group mean (left) and difference (right) in �. These estimates are about one-quarter (top right), which
corresponds to the group effect that was introduced in the simulations (black bars). The small bars correspond to 90% Bayesian
confidence intervals. A reduced parameter estimate corresponds to the Bayesian model average over all possible models (full and
reduced) following Bayesian model reduction.
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used by subjects. Crucially, patient groups and healthy
control subjects might differ in both the hyperparameters
of their subjective models (e.g., the hyperprior on preci-
sion) as well as the state space underlying these models.
For example, we have illustrated a subjective model in
which precision is a hidden state that has to be inferred.
However, it is possible that some subjects or patient
groups do not perform inference on precision, such that
their best model would be one in which precision is not
inferred. Likewise, patient groups and healthy control subjects
might differ in how they represent prior expectations; for exam-
ple, by encoding losses and wins separately. This can be
tested by using formal model comparisons as described
above, where models that include precision as a hidden
state are compared to models where no inference on pre-
cision is made, or to models that have a different parame-
terization for losses and wins. This has been the focus of
previous work (Schwartenbeck et al., 2015b) and, impor-
tantly, also speaks to the issue of Bayesian model compar-
ison and averaging (FitzGerald et al., 2014), as well as
structure learning (Tervo et al., 2016), when performing a
task. More generally, any assumption that is implicit in the
form of hyperparameterization of a model can be tested
empirically through Bayesian model comparison. In this
sense, the particular model used to illustrate the approach in
this article should not be taken too seriously; every aspect
can be optimized in relation to empirical choice behavior
until an optimal description of the paradigm is identified.

Finally, we can use a cross-validation scheme imple-
mented by the routine spm_dcm_loo to test whether
group membership can be accurately recovered, based
on a leave-one-out scheme. This scheme uses the pre-
dictive posterior density of a predictive variable (Friston
et al., 2015c), which is � in our example. In brief, this
cross-validation or predictive scheme switches the roles
of the between-subject explanatory variables (e.g., diag-
nosis) and the subject-specific parameter estimates they
are trying to explain. This allows one to classify a partic-
ular subject based on that subject’s parameter estimates,
and to classify group effects based on independent data.
Figure 8 shows the results of this cross-validation scheme,
which speaks to a high accuracy in recovering the group
membership, as indicated by a high correlation between
recovered and actual group membership (Fig. 8, top right)
and a conclusive posterior probability for group member-
ship for each subject (Fig. 8, bottom). This facility may be
useful for classifying new subjects based on their com-
putational phenotyping. Note that the inferred difference
in the latent variable precision (Fig. 7) and the inferred
group membership based on this latent variable (Fig. 8)
corresponds closely with the actual (simulated) group
difference in an observed variable; namely, the average
reward received by each group in this task (Fig. 9). Im-
portantly, this shows that the inference scheme discussed
above can infer the latent variable underlying the ob-
served variables. This is important because the implicit
inverse problem is usually ill posed and can have many
solutions.

A common approach to evaluate the goodness of dif-
ferent models relies on cross-validation. In other words,

model parameters are optimized using a (training) subset
of the data and tested on another (test) subset. Model
performance can then be assessed purely in terms of
accuracy, without having to worry about complexity. This
is because the use of independent training and test data
precludes overfitting. Therefore, cross-validation accu-
racy can be regarded as a proxy for model evidence and
used, in a straightforward way, to compare different mod-
els. The approaches described in this article eschew cross-
validation, because the model evidence is assessed directly
through its variational free-energy approximation. There are
pros and cons of a variational assessment of model evi-
dence, in relation to cross-validation accuracy. In brief,
the variational approach is universally more efficient (by
Neyman–Pearson Lemma) than cross-validation. This can
be seen heuristically by noting that the model inversion
and parameter estimation in cross-validation uses incom-
plete (training) data (e.g., a leave one scheme). On the
other hand, cross-validation accuracy is robust to model
assumptions, and does not rely on variational approxima-
tions to model evidence. This means that it can be useful
in assessing the robustness of variational schemes of the
sort described in this article.

Conclusion
We have tried to provide an overview of the key steps
entailed by phenotyping in computational psychiatry,
using a worked example based on a (Markov) decision
process. The first, and probably most important, step is
the specification of the (subjective) generative model for a
task or paradigm. This model encodes a mapping from
hidden states or parameters to outcomes and can be
used to simulate (generate) data. More importantly, it
forms the basis of an objective generative model for
empirical choice behavior; enabling one to map from
choices to (subject-specific) model (hyper) parameters.
This allows one to estimate the prior preferences and
hyperpriors used by the subject to select their behavior.

Our simulations were based on a particular computational
approach called active inference, which casts (choice) be-
havior and planning as pure Bayesian inference with respect
to an agent’s prior expectations. This approach can be
particularly useful when we want to cast a decision process
as inference [i.e., assuming a stable (subjective) generative
model that is used to infer hidden states or policies]. Fur-
thermore, this allows one to compare a (Bayesian) inference
model to a (Bayesian or reinforcement) learning model, in
which the parameterization of the (subjective) generative
model is continuously updated (FitzGerald et al., 2014). Fu-
ture work will implement the aspect of learning within the
active inference scheme, such that the parameterization of
the generative model can be updated and simultaneously
used to infer hidden states. A limitation of this computational
toolbox is that it provides solutions only for discrete state-
space problems, which significantly simplifies a given deci-
sion or planning problem at the expense of biological realism
about the inferred neuronal mechanisms underlying the de-
cision process.

An important aim of computational psychiatry is to
characterize the generative processes that underlie path-
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ological choice behavior. A first step to achieve this is to
perform single-subject model inversion to estimate their
prior beliefs and then compare these estimates at the
between-subject level. Hierarchical or empirical Bayes

and Bayesian cross-validation can then be used to test
hypotheses about group differences such as diagnosis or re-
sponse to treatment. While we have used a specific example of
Markov decision processes based on active Bayesian infer-

Figure 8. Cross-validation based on a leave-one-out scheme. Using the function spm_dcm_loo, we find that group membership is
accurately recovered based on the parameter estimate of the hyperprior on each subject. This is evidenced by a high correlation
between inferred and true group membership in the top right panel. These reflect out-of-sample estimates of effect sizes, which were
large (by design) in this example. The top right panel provides the estimate of the group indicator variable (which is �1 for the first
group and �1 for the second group). The bottom panel provides the posterior probability that each subject belongs to the first group.
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ence, the procedures we have described are generic, and may
provide an exciting, straightforward, and principled approach
to personalized treatment in psychiatry.

Software notes
Here we describe the key routines called on in the text. These
routines are called in a demo script that can be edited and
executed to change various parameters. The demo script is
described first, followed by the key routines it calls.

DEM_demo_MDP_fit
This routine uses a Markov decision process formulation
of active inference (with variational Bayes) to model for-
aging for information in a three-arm maze. This demo
illustrates the inversion of single-subject and group data
to make inferences about subject-specific parameters,
such as their prior beliefs about precision and utility. We
first generate some synthetic data for a single subject and
illustrate the recovery of key parameters using variational
Laplace. We then consider the inversion of multiple trials
from a group of subjects to illustrate the use of empirical
Bayes in making inferences at the between-subject level.
Finally, we demonstrate the use of Bayesian cross-
validation to retrieve out-of-sample estimates (and the
classification of new subjects).

In this example, the agent starts at the center of a
three-way maze that is baited with a reward in one of the
two upper arms. However, the rewarded arm changes

from trial to trial. Crucially, the agent can identify where
the reward (US) is located by accessing a cue (CS) in the
lower arm. This tells the agent whether the reward is on
the left or the right upper arm. This means the optimal
policy would first involve maximizing information gain or
epistemic value by moving to the lower arm and then
claiming the reward thus signified. Here, there are eight
hidden states (four locations times right or left reward),
four control states (that take the agent to the four loca-
tions), and seven outcomes (three locations times two
cues plus the center). The central location has an ambig-
uous or uninformative outcome, and the upper arms are
rewarded probabilistically.

spm_MDP_VB
% active inference and learning using variational Bayes

% FORMAT [MDP] � spm_MDP_VB(MDP,OPTIONS)
%
% MDP.S(N,1)- true initial state
% MDP.V(T - 1,P)- P allowable policies (control se-

quences)
%
% MDP.A(O,N)- likelihood of O outcomes given N hid-

den states
% MDP.B{M}(N,N)- transition probabilities among hid-

den states (priors)
% MDP.C(N,1)- prior preferences (prior over future out-

comes)

Figure 9. Simulated group difference between control subjects and patients (with a group difference in precision of one-quarter) in
the average reward received. Note that this difference in an observable variable was successfully traced back to a difference in the
hyperprior on precision (a latent variable) by our inference scheme, which is important because such inverse problems are usually ill
posed and hard to solve.
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% MDP.D(N,1)- prior probabilities (prior over initial states)
%
% MDP.a(O,N)- concentration parameters for A
% MDP.b{M}(N,N)- concentration parameters for B
% MDP.c(N,N)- concentration parameters for habitual B
% MDP.d(N,1)- concentration parameters for D
% MDP.e(P,1)- concentration parameters for u
%
% optional:
% MDP.s(1,T)- vector of true states
% MDP.o(1,T)- vector of observations
% MDP.u(1,T)- vector of actions
% MDP.w(1,T)- vector of precisions
%
% MDP.alpha- upper bound on precision (Gamma hy-

perprior – shape [1])
% MDP.beta- precision over precision (Gamma hyper-

prior - rate [1])
%
% OPTIONS.plot- switch to suppress graphics: (default: [0])
% OPTIONS.scheme- {’Free Energy’ | ’KL Control’ |

’Expected Utility’};
% OPTIONS.habit- switch to suppress habit learning:

(default: [1])
%
%
% produces:
%
% MDP.P(M,T)- probability of emitting action 1,. . .,M at

time 1,. . .,T
% MDP.Q(N,T)- an array of conditional (posterior) ex-

pectations over
%N hidden states and time 1,. . .,T
% MDP.X- and Bayesian model averages over policies
% MDP.R- conditional expectations over policies
%
% MDP.un- simulated neuronal encoding of hidden

states
% MDP.xn- simulated neuronal encoding of policies
% MDP.wn- simulated neuronal encoding of precision

(tonic)
% MDP.dn- simulated dopamine responses (phasic)
% MDP.rt- simulated reaction times
This routine provides solutions of an active inference

scheme (minimization of variational free energy) using a
generative model based on a Markov decision process. This
model and inference scheme is formulated in discrete space
and time. This means that the generative model and process
are finite-state machines or hidden Markov models, whose
dynamics are given by transition probabilities among states,
and the likelihood corresponds to the probability of an out-
come given hidden states. For simplicity, this routine as-
sumes that action (the world) and hidden control states (in
the model) are isomorphic.

This implementation equips agents with the prior beliefs
that they will maximize expected free energy: expected
free energy is the free energy of future outcomes under
the posterior predictive distribution. This can be inter-
preted in several ways)—most intuitively as minimizing the
KL divergence between predicted and preferred out-

comes (specified as prior beliefs)—while simultaneously
minimizing the (predicted) entropy of outcomes condi-
tioned on hidden states. Expected free energy therefore
combines KL optimality based on preferences or utility
functions with epistemic value or information gain.

This particular scheme is designed for any allowable pol-
icies or control sequences specified in MDP.V. Constraints
on allowable policies can limit the numerics or combinato-
rics considerably. For example, situations in which one ac-
tion can be selected at one time can be reduced to T polices,
with one (shift) control being emitted at all possible time
points. This specification of polices simplifies the generative
model, allowing a fairly exhaustive model of potential out-
comes, eschewing a mean field approximation over succes-
sive control states. In brief, the agent encodes beliefs about
hidden states in the past and in the future conditioned on
each policy (and a nonsequential state–state policy called a
habit). These conditional expectations are used to evaluate
the (path integral) of free energy that then determines the
prior over policies. This prior is used to create a predictive
distribution over outcomes, which specifies the next action.

In addition to state estimation and policy selection, the
scheme also updates model parameters, including the state
transition matrices, mapping to outcomes, and the initial
state. This is useful for learning the context. In addition, by
observing its own behavior, the agent will automatically learn
habits. Finally, by observing policies chosen over trials, the
agent develops prior expectations or beliefs about what it
will do. If these priors (over policies, which include the habit)
render some policies unlikely (using an Ockham’s window),
they will not be evaluated.

spm_dcm_mdp
% MDP inversion using Variational Bayes

% FORMAT [DCM] � spm_dcm_mdp(DCM)
%
% Expects:
%———————————————————————
% DCM.MDP% MDP structure specifying a generative

model
% DCM.field% parameter (field) names to optimize
% DCM.U% cell array of outcomes (stimuli)
% DCM.Y% cell array of responses (action)
%
% Returns:
%———————————————————————
% DCM.M% generative model (DCM)
% DCM.Ep% Conditional means (structure)
% DCM.Cp% Conditional covariances
% DCM.F% (negative) Free-energy bound on log evi-

dence
This routine inverts (cell arrays of) trials specified in

terms of the stimuli or outcomes and subsequent choices
or responses. It first computes the prior expectations (and
covariances) of the free parameters specified by DCM-
.field. These parameters are log-scaling parameters that
are applied to the fields of DCM.MDP.

If there is no learning implicit in multitrial games, only
unique trials (as specified by the stimuli) are used to
generate (subjective) posteriors over choice or action.
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Otherwise, all trials are used in the order specified. The
ensuing posterior probabilities over choices are used with
the specified choices or actions to evaluate their log
probability. This is used to optimize the MDP (hyper)
parameters in DCM.field using variational Laplace (with
numerical evaluation of the curvature).

spm_dcm_peb
% Hierarchical (PEB) inversion of DCMs using BMR and
VL

% FORMAT [PEB,DCM] � spm_dcm_peb(DCM,M,field)
% FORMAT [PEB,DCM] � spm_dcm_peb(DCM,X,field)
%
% DCM - {N [x M]} structure array of DCMs from N

subjects
%

————————————————————————-
% DCM{i}.M.pE- prior expectation of parameters
% DCM{i}.M.pC- prior covariances of parameters
% DCM{i}.Ep- posterior expectations
% DCM{i}.Cp- posterior covariance
% DCM{i}.F- free energy
%
% M.X- second-level design matrix, where X(:,1) �

ones(N,1) [default]
% M.pC- second-level prior covariances of parameters
% M.hE- second-level prior expectation of log preci-

sions
% M.hC- second-level prior covariances of log preci-

sions
% M.bE- third-level prior expectation of parameters
% M.bC- third-level prior covariances of parameters
%
% M.Q- covariance components:

{’single’,’fields’,’all’,’none’}
% M.beta- within:between precision ratio: [default � 16]
%
% field- parameter fields in DCM{i}.Ep to optimize [de-

fault: {’A’,’B’}]
%’All’ will invoke all fields. This argument effectively

allows
%one to specify the parameters that constitute random

effects.
%
% PEB- hierarchical dynamic model
%

————————————————————————-
% PEB.Snames- string array of first-level model names
% PEB.Pnames- string array of parameters of interest
% PEB.Pind- indices of parameters in spm_vec

(DCM{i}.Ep)
%
% PEB.M.X- second-level (between-subject) design

matrix
% PEB.M.W- second-level (within-subject) design ma-

trix
% PEB.M.Q- precision [components] of second-level

random effects
% PEB.M.pE- prior expectation of second-level param-

eters

% PEB.M.pC- prior covariance of second-level param-
eters

% PEB.M.hE- prior expectation of second-level log-
precisions

% PEB.M.hC- prior covariance of second-level log-
precisions

% PEB.Ep- posterior expectation of second-level pa-
rameters

% PEB.Eh- posterior expectation of second-level log-
precisions

% PEB.Cp- posterior covariance of second-level pa-
rameters

% PEB.Ch- posterior covariance of second-level log-
precisions

% PEB.Ce- expected covariance of second-level ran-
dom effects

% PEB.F- free energy of second-level model
%
% DCM- first-level (reduced) DCM structures with em-

pirical priors
%
% If DCM is an (N x M} array, hierarchical inversion will be
% applied to each model (i.e., each row) - and PEB will be a
% {1 x M} cell array.
This routine inverts a hierarchical DCM using variational

Laplace and Bayesian model reduction. In essence, it opti-
mizes the empirical priors over the parameters of a set of
first-level DCMs, using second-level or between-subject con-
straints specified in the design matrix X. This scheme is efficient
in the sense that it does not require inversion of the first-level
DCMs—it just requires the prior and posterior densities from
each first-level DCM to compute empirical priors under the
implicit hierarchical model. The output of this scheme (PEB)
can be re-entered recursively to invert deep hierarchical mod-
els. Furthermore, BMC can be specified in terms of the empir-
ical priors to perform BMC at the group level. Alternatively,
subject-specific (first-level) posterior expectations can be used
for classic inference in the usual way. Note that these (summary
statistics) are optimal in the sense that they have been esti-
mated under empirical (hierarchical) priors.

If called with a single DCM, there are no between-
subject effects, and the design matrix is assumed to
model mixtures of parameters at the first level. If called
with a cell array, each column is assumed to contain
first-level DCMs inverted under the same model.

spm_dcm_loo
% Leave-one-out cross-validation for empirical Bayes and
DCM

% FORMAT [qE,qC,Q] � spm_dcm_loo(DCM,M,field)
%
% DCM - {N [x M]} structure DCM array of (M) DCMs

from (N) subjects
% ——————————————————————
% DCM{i}.M.pE- prior expectation of parameters
% DCM{i}.M.pC- prior covariances of parameters
% DCM{i}.Ep- posterior expectations
% DCM{i}.Cp- posterior covariance
%

Methods/New Tools 16 of 18

July/August 2016, 3(4) e0049-16.2016 eNeuro.sfn.org



% M.X- second-level design matrix, where X(:,1) �
ones(N,1) [default]

% field- parameter fields in DCM{i}.Ep to optimize [de-
fault: {’A’,’B’}]

%’All’ will invoke all fields
%
% qE- posterior predictive expectation (group effect)
% qC- posterior predictive covariances (group effect)
% Q- posterior probability over unique levels of X(:,2)
This routine uses the posterior predictive density over

the coefficients of between-subject effects encoded by
a design matrix X. It is assumed that the second column
of X contains classification or predictor variables. A
cross-validation scheme is used to estimate the mixture
of parameters at the first (within-subject) level that are
conserved over subjects in terms of a constant (first
column of X) and differences (second column of X).
Using a leave-one-out scheme, the predictive posterior
density of the predictive variable is used to assess
cross-validation accuracy. For multiple models, this
procedure is repeated for each model in the columns of
the DCM array.
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