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The human brain is a complex adaptive system in which a 
vast array of behaviors arises from coordinated neural activ-
ity across diverse spatial and temporal scales. Linking activ-

ity within this large-scale neural architecture to cognitive function 
remains an important goal for neuroscience.

The analysis of complex brain networks can be used to interro-
gate the organizational properties of the brain that are crucial for 
its functional dynamics1. Network accounts of brain function have 
hypothesized that a ‘dynamic core’ of regions flexibly guides the 
flow of activity in the brain to facilitate cognition2. These frame-
works predict that a distributed set of core regions is active across 
multiple tasks3 and integrates more specialized regions4, altering 
baseline communication dynamics in service of task-specific com-
putations. Although computational approaches have investigated 
these large-scale patterns5, little is currently known about the 
mechanisms that facilitate system-wide brain state dynamics as a 
function of cognition.

One tractable approach to this problem is to exploit the redun-
dancy within complex systems by utilizing dimensionality reduction 
techniques6,7. These approaches uncover latent functional patterns 
in complex data sets by distilling brain activity patterns into spatio-
temporally similar components7. The dynamics of the system can 
then be interrogated within this low-dimensional space, offering 
insights into the mechanisms that underlie the system’s function. 
These approaches have successfully been used in the past to elu-
cidate the functional brain circuitry that underlies the behavioral 
repertoires of a diverse range of organisms, including the nematode 
(Caenorhabditis elegans), the fruit fly (Drosophila melanogaster), 
and the ferret (Mustela putorius furo)8–11. Computational modeling 
suggests that similar dynamic low-dimensional processes should 
exist within the human brain1.

Here, we analyzed whole-brain functional neuroimaging data 
across a suite of cognitive tasks to identify the low-dimensional 

dynamic core of cognition in the human brain. We found that the 
dynamic functional organization of the brain across a suite of cog-
nitive tasks describes a flow along a low-dimensional state space. 
This dynamic flow aligns with unique cognitive brain states that 
recur across distinct cognitive tasks. We next found that the flow 
of activity reflects an ‘integrative core’ that maximizes informa-
tion processing complexity over relatively long timescales. Finally, 
we showed that the axes of this low-dimensional space are closely 
related to spatial patterns of gene expression for specific families of 
neuromodulatory receptors, and to unique signatures of structural 
network controllability, which together provide a plausible biologi-
cal medium for the modulation of system-level brain dynamics. 
These results present a novel view of brain function based on the 
coordinated dynamics of functional brain networks over time and 
highlight the association between a suite of distinct neuromodula-
tory systems and cognitive function.

Low-dimensional global brain activity recurs across multiple 
cognitive tasks
We used 3 T functional magnetic resonance imaging (fMRI) data 
(repetition time (TR) =  0.72 s) from the Human Connectome Project 
(HCP) to examine blood-oxygen-level-dependent (BOLD) activity 
from 200 unrelated individuals across seven cognitive tasks, each of 
which engages distinct cognitive functions: emotional processing, 
gambling, mathematical calculation, language processing, motor 
execution, working memory performance, relational matching, and 
social inference12. Preprocessed BOLD time series were extracted 
from 375 cortical and subcortical parcels13 and concatenated across 
all seven tasks and across all subjects. To ensure reproducibility, we 
initially developed these analyses in a 100-subject discovery data set 
and then replicated in a 100-subject replication cohort.

Principal component analysis (PCA) was applied to the multi-
task BOLD time series to reorganize the regional BOLD data into 
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a smaller set of spatially orthogonal principal components (PCs; 
Fig. 1a). The spatial maps identified by this approach were simi-
lar, but distinct to those identified using an intersubject correla-
tion approach14 (Supplementary Fig. 1). Across divergent cognitive 
tasks, we found a dominant, low-dimensional neural signal7: the 
first five PCs accounted for 67.9% of the variance. Furthermore, an 
analysis of the number of ‘false nearest neighbors’ demonstrated 
that the first five PCs resolved greater than 90% of the embedding  
space15 (Fig. 1b).

The time series of each PC (tPC) was created by weighting 
the original BOLD time series from the replication data set with 
the parcel loading for each spatial component from the discovery 
data set at each time point of the experiment. This allowed us to 
track the engagement of each PC over time. The first tPC, which 
explained 38.1% of signal variance across all tasks, reflected a task-
dominant signal that was strongly correlated with the overall task 
block structure across all seven tasks (r =  0.64; P <  0.01; Fig. 1c) 
and was strongly replicable across cohorts (r =  0.84). This result 
is consistent with previous work that has demonstrated a distrib-
uted network of task-invariant brain regions that persists across the  
performance of multiple unique cognitive tasks3. In addition, the 
analysis demonstrated prominent spatial overlap between PC1 and 
dorsal attention, frontoparietal, and visual networks, along with 
striatum, thalamus, and lateral cerebellum (Fig. 1d). Notably, fit-

ting a PCA to each of the seven individual tasks separately did not 
recover the same underlying principal component, but instead iden-
tified spatial maps that aligned with the idiosyncratic demands of 
each task (Supplementary Fig. 2), thus providing evidence that the 
first PC represented a domain-general core dimension for cross-
task cognitive function.

The next three components (tPC2−4) reflected a closer relation-
ship with specific cognitive tasks (Fig. 1c). For example, tPC2 (10.3% 
variance explained) was associated with the social task and language 
processing; tPC3 (8.4%) with gambling and emotion; and tPC4 
(6.3%) with arithmetic functions (Fig. 1c,d). In contrast, tPC5 (4.8%) 
was associated with engagement across multiple tasks (r =  0.20;  
P <  0.01). Specifically, the time course of tPC5 was correlated with 
the absolute value of the first derivative of the task design (r =  0.11; 
P <  0.01), suggesting that tPC5 was uniquely associated with the 
transition into and out of unique task states. In accordance with this 
finding, tPC5 was associated with activity across a right-lateralized 
system of cingulate, parietal, and opercular cortical regions (Fig. 1a) 
that have previously been shown to have a crucial role in cognitive 
task engagement and error monitoring16.

Global brain state dynamics
A substantial benefit of PCA over other analytic approaches is that 
the technique imposes orthogonality onto the components, which 
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is crucial for providing a low-dimensional subspace in which to 
embed the state space manifold (Fig. 2). Other popular methods 
(such as independent component analysis) find a different set of 
optimal solutions (such as maximal statistical independence), but 
these are not, in general, linearly independent17. Notably, state space 
attractors are invariant to linear transformations of their embed-
ding phase space as long as the dimensions remain orthogonal18. 
Hence, PCA enables analysis of the state space trajectory (or flow) 
of the dominant low-dimensional signal, which in turn reflects the 
temporal evolution of the global brain state. Any residual variance 
(that is, from those components not included in the reconstruction) 
represents a stochastic influence on the ensuing flow.

To facilitate further analysis of the low-dimensional embedding 
space, the tPC1 time course was partitioned into relative phase seg-
ments8: a trough in tPC1 defined the low phase (blue in Fig. 2a); 
an increase in tPC1 defined the rise phase (red); a plateau in the 
tPC1 signal defined the high phase (orange); and a decrease in tPC1 
defined the fall phase (light blue) of the low-dimensional flow of tPC1 
(see Methods for details). The resulting phase portrait describes the 
temporal evolution of the low-dimensional signal shared across all 
behavioral tasks (Fig. 2c; see Supplementary Fig. 3 for projection of 
tPC4−5). The different phases of tPC1 were distinctly related to exog-
enous task demands, with a greater frequency of high phases during 
task blocks across all seven tasks, and low phases during interleaved 
rest blocks across tasks (P <  0.01).

To test the hypothesis that the extremes of tPC1 engagement rep-
resented task-driven attractor states19, we correlated the absolute 
value of the tPC1 signal with a temporal stability measure, which 
was calculated by comparing the BOLD response across the brain 
at adjacent time points. We found that tPC1 signal was strongly 
engaged (both positively and negatively) during periods of relative 

stability (r =  0.58; P <  0.001; Fig. 2b), which is consistent with the 
presence of state space attractors at the extremes of the tPC1 gradi-
ent. This yields a novel picture of brain functioning in which large-
scale brain dynamics switch between trajectories that are driven by 
task-oriented and internally generated attractors according to pre-
vailing external constraints.

By calculating the mean activity across the trajectories in Fig. 2c,  
and projecting these into the embedding space, we were able to 
recover a canonical low-dimensional manifold19 that transcends 
multiple cognitive task states (Fig. 2d)20 and that was similar follow-
ing removal of task-mediated effects before PCA21 (Supplementary 
Fig. 4). After accounting for task effects, the distribution of tPC1 
dwell times was best described by an exponential distribution, 
which is consistent with a noise-driven multistable process22, in 
which the global brain state transitions between relatively shallow 
attractor basins (Fig. 2b). That is, even though the average flow is 
smooth, the naive (that is, non-averaged) flow bears the imprint of 
noise-driven excursions. However, it is important to clarify that the 
specific nature of the flow through this embedding space invariably 
reflects a combination of the timing of the tasks, along with the par-
ticular cognitive processes driven by each task, and thus would not 
be invariant to changes in external context23.

Finally, engagement of the low-dimensional architecture was sig-
nificantly correlated with individual differences in fluid intelligence24. 
Higher scores on the Raven’s progressive matrices task (measured 
outside the scanner) were associated with stronger positive loadings 
on tPC1 during high phases of tPC1 (ρ =  0.25; P <  0.01) and stronger 
negative loadings on tPC1 during the low phases (ρ =  − 0.24; P <  0.01; 
Supplementary Fig. 5). That is, those individuals with greater fluid 
intelligence displayed more effective flow through the embedding 
space, both into and out of the state space attractor basins.

1.00

0.96

0.92

0.88

0.00
–10.0 –7.5 –5.0 –2.5

T
em

po
ra

l s
ta

bi
lit

y

0.0
tPC1

tPC1 time series

tPC3

tPC1

tPC2

tPC3

c

d

a b

tPC1

tPC2

Low

High

R
is

e F
all

2.5 5.0 7.5

Fig. 2 | The low-dimensional signature across cognitive tasks. a, The procedure used to partition tPC1 into unique phases: low (blue), rise (red), high 
(orange), and fall (light blue). b, Scatter plot comparing the loading of tPC1 (colored according to the partition defined in a) with a temporal stability 
measure (defined by the similarity of the BOLD response at adjacent time points); we observed a significant positive Pearson’s correlation (r =  0.58) 
between |tPC1| and temporal stability (n =  1,939 time points), providing heuristic evidence for attractor basins at the extremes of tPC1 engagement.  
c, A three-dimensional scatter plot comparing the first three tPCs; each node represents one time point (colored according to the phase of tPC1), with time 
implicitly unfolding across the embedding space (contiguous points connected by black line). d, The low-dimensional manifold traversed by the global 
brain state across the first three dimensions, with arrows depicting the direction of flow along the manifold.

NATURE NEUROSCIENCE | VOL 22 | FEBRUARY 2019 | 289–296 | www.nature.com/natureneuroscience 291



ARTICLES NATURE NEUROSCIENCE

The cognitive relevance of the global brain state
Having demonstrated that brain state dynamics can be effectively 
described by the temporal evolution along a low-dimensional tra-
jectory, we were next interested in understanding the potential cog-
nitive relevance of the brain’s low-dimensional dynamics. Although 
the seven tasks were designed to probe specific cognitive functions, 
each also consists of coordinated activity along a series of different 
specialist dimensions. For example, the N-back task was designed 
to examine working memory maintenance and updating12, but also 
involves visual processing, response inhibition, and motor coordi-
nation (among other processes). As such, we predicted that each 
of the tasks should recruit similar cognitive capacities, albeit to  
varying degrees, that were defined by idiosyncratic task challenges 
and complexity.

To test this hypothesis, we utilized meta-analytic data from an 
existing ‘topic-modeling’ analysis that identified the latent struc-
ture present across 5,809 functional neuroimaging studies. This 
approach links spatial BOLD activation patterns to the ‘topics’ 
investigated in the original fMRI experiments25. Four ‘topic families’, 
representing ‘motor’, ‘cognitive’, ‘language’, and ‘memory’, were iden-
tified by clustering the activation patterns from a 50-topic solution 
using the NeuroSynth repository (Fig. 3a; each family represented 
a number of subtopics identified in the meta-analysis; results were 
confirmed using a ‘reverse inference’ approach; see Supplementary 
Table 1)25. A time series was then created for each topic family by 
weighting the original BOLD data with the spatial activation pattern 
of each topic family over time. Comparison with the PC time series 

revealed a clear relationship between the tPC time series and latent 
cognitive processes; for instance, ‘motor’ and ‘cognitive’ functions 
were jointly separated from ‘memory’ and ‘language’ function by 
tPC1, but were separated from one other by tPC5 (Fig. 3b).

We then projected the topic families back into the low-dimen-
sional embedding space by assigning the regional BOLD pattern at 
each time point to the topic family to which it demonstrated the 
strongest spatial correspondence (Fig. 3c). To test for statistical sig-
nificance, we constructed a null data set (5,000 iterations) using a 
block-randomization resampling procedure that arbitrarily (and 
repeatedly) splits and reorganizes data over time, similar to the way 
a dealer would ‘cut’ a deck of cards. This approach scrambles the 
alignment of the data to the task structure, but largely preserves 
temporal autocorrelation, which can have important influences on 
the relative degrees of freedom in the data. By comparison to this 
null distribution, the four topic families occupied unique subspaces 
of the low-dimensional manifold (Fig. 3d): the ‘motor’ and ‘cogni-
tive’ families were active during high phases, whereas the ‘memory’ 
and ‘language’ families were active during low phases of the mani-
fold (P < 0.01; Fig. 3e). These results highlight the clear relationship 
between flow on the low-dimensional manifold and recruitment of 
specific cognitive processes.

Complex cognitive brain state dynamics
Based on earlier work2,26,27, we hypothesized that flow along the tPC1 
dimension represented an integrative core that balances the com-
peting requirements of global integration (adaptively modifying 
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the functional network signature of the brain in response to task 
demands) and differentiation (ensuring the distinctive configura-
tion of neural systems required of each cognitive state)2,28. To test 
this hypothesis, we calculated time-varying functional connectivity 
from the concatenated BOLD time series (after first regressing task 
effects from each time series) and applied graph theoretical analy-
ses to the resultant temporal connectivity matrices (Supplementary 
Fig. 6). We used a general linear model to examine the relationship 
between the tPC1−5 time series and time-resolved network archi-
tecture, allowing the identification of the topological signature of 
each PC. In our analysis, a functional network was taken to be inte-
grated when the connectivity matrix demonstrated low modularity 
(Q), which is a measure that quantifies how easily a network can 
be partitioned into modules, and a high median participation coef-
ficient (BT), which is elevated when regions connect across multiple 
distinct modules (segregation was associated with opposite topo-
logical signature; that is, low median BT and high Q). Expression 
of tPC1 was associated with a distributed and integrated network 
topology with strong connections across functionally specialized 
modules (Fig. 4a). In contrast, the topological signatures of lower 
components were more heterogeneous (Fig. 4b). Specifically, tPC2−4 
demonstrated a trade-off between integration and segregation, 
whereas tPC5 displayed a relatively segregated signature (Fig. 4c). 
These patterns suggest that different low-dimensional components 
may reflect unique constraints on the balance between integration 
and segregation in the brain.

The most integrative regions associated with PC1 were diffusely 
distributed across the majority of canonical ‘resting state’ networks, 
involving regions in the frontal, parietal, and temporal cortex, along 
with the bilateral amygdala and the lateral cerebellum (Fig. 4a). 
There was a distinct relationship between time-resolved network 
topology and the low-dimensional manifold (Fig. 4d): the topologi-
cal architecture of the brain was more integrated (that is, had higher 
median BT and lower Q) during the high phases (median BT across all 
parcels =  0.24 ±  0.1; P <  0.01; median Q = 0.59 ±  0.1; P <  0.01), but 
segregated during the low phases (median BT =  0.15 ±  0.1; P <  0.01; 

median Q = 0.65 ±  0.1; P <  0.01), further supporting our hypoth-
esis. Consistent with previous work27, there was also a significant 
relationship between global network integration (mean BT) and 
the ‘cognitive’ topic family (mean BT across all parcels =  0.24 ±  0.1;  
P <  0.01). In contrast, the ‘memory’ topic family was associated with 
a more segregated network topology (0.15 ±  0.1; P <  0.01). The same 
relationship was reflected in network modularity (P <  0.01). Each of 
these topological patterns is consistent with previous studies—cog-
nitive performance is commonly associated with an integrated net-
work topology27, whereas effective visual semantic memory has been 
shown to benefit from a more segregated architecture29.

Although system-wide integration is an important signature of 
complex networks, biological systems also need to retain sufficient 
flexibility to cope with an array of adaptive challenges. That is, the 
global brain state should also demonstrate differentiation2, reflect-
ing the need for each state of the brain to be distinct from every other 
possible state. To test this prediction, we estimated the Lempel–Ziv 
complexity of each regional time series30. Lempel–Ziv complexity 
estimates the number of distinct binary sequences required to reca-
pitulate a test sequence: information-rich time series have higher 
complexity and thus require a larger dictionary of sequences to rec-
reate them30. As predicted2, the mean regional signature of integra-
tion was positively correlated with Lempel–Ziv complexity (r = 0.42; 
P <  0.01; Fig. 4e).

The brain can also control information flow by modulating inter-
regional interactions at different temporal scales. Previous work has 
demonstrated a heterogeneity of time scales across the brain31,32, in 
which sensory regions process information quickly (that is, on the 
order of milliseconds to seconds), whereas more integrated hubs 
attune to information on slower time scales (that is, seconds to 
minutes). To determine whether the low-dimensional topological 
signature of tPC1 was associated with a unique temporal signature, 
we correlated the extent of autocorrelation within each region with 
the loading between the time-resolved BT and tPC1. This analysis 
revealed a negative correlation at shorter time scales (0.72–5.02 s) 
and a positive correlation at longer time scales (9.36–13.68 s;  
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P <  0.05; Fig. 4f), suggesting that tPC1 processes information at rela-
tively slow time scales.

Neurotransmitter receptor gradients gate cognitive brain 
dynamics
We next sought to understand the factors that control flow on the 
low-dimensional manifold outside of the particular sensory and 
cognitive constraints imposed by each task. Plausible candidates 
for orchestrating global control over brain state dynamics are the 
ascending neuromodulatory systems of the brainstem and fore-
brain33. These highly conserved nuclei project widely throughout 
the brain to modulate the ‘gain’ of receptive neuronal populations 
and, hence, alter inter-regional communication34. That is, they are 
able to broadly modulate brain network connectivity in a context-
sensitive fashion35. Extensive literature links neuromodulatory sys-
tems to a broad range of cognitive functions36, and receptors from 
several neurotransmitter families have been implicated in either 
facilitating or inhibiting cognitive processing33. Interactions among 
these systems are also crucial, suggesting that the neuromodulatory 
system acts as a complex adaptive network that maintains nonlinear 
influence over brain network topology and dynamics37.

To test this hypothesis, we used the Allen Brain Micro-Array 
Atlas (http://human.brain-map.org/) to identify the spatial cover-
age of a range of metabotropic neurotransmitter receptors using 
post-mortem data on variation in neurotransmitter receptor gene 
expression. We investigated two main classes of receptor with 
known opposing effects on cognitive function37: a facilitatory 
group, including dopaminergic D1 (which is encoded by the DRD1 
gene)33, noradrenergic α 2A (ADRA2A), cholinergic M1 (CHRM1), 
and serotonergic 5HT2A (HTR2A) receptors; and an inhibitory 
group, including D2 (DRD2), α 1A (ADRA1A), and 5HT1A (HTR1A) 
receptors (as a result of inconsistent evidence in the literature, no 
muscarinic cholinergic receptors were included in the inhibitory 
group). Each of these receptors modulates the signal-to-noise ratio 

in neurons by activating G-protein-coupled receptors38, with effects 
typically most pronounced at the network level39.

To compare brain state dynamics with neuromodulatory cov-
erage, we related the spatial pattern of receptor density (as mea-
sured indirectly through gene transcription patterns) to each of 
the system-wide signatures identified in the preceding analyses 
(Supplementary Table 2). We observed opposing relationships 
between the neuromodulatory groups and the first two tPCs (see 
Supplementary Table 2): the facilitatory group loaded positively 
onto tPC1, whereas the inhibitory group loaded negatively (Fig. 5). 
In contrast, tPC2 better delineated the receptor families, loading pos-
itively onto monoaminergic (that is, dopaminergic and noradren-
ergic), and negatively onto serotonergic and cholinergic receptors 
(Fig. 5). The neuromodulatory groups also demonstrated unique 
topology: the facilitatory group was associated with increased func-
tional integration (Fig. 5; Q =  0.14), whereas the inhibitory group 
was relatively segregated (Q =  0.55). Our results thus provide a link 
between neuromodulatory system heterogeneity and the dynamic 
neural states required for diverse cognitive tasks37.

The spatial overlap between low-dimensional system dynamics 
(estimated from task fMRI) and neurotransmitter receptor topog-
raphy (estimated from post-mortem brain tissue) suggests that 
global brain state dynamics may be controlled by the recruitment 
of distinct neurotransmitter classes26. To test this hypothesis, we 
compared the spatial maps for each receptor subtype with struc-
tural network signatures that mediate distinct control patterns 
in the human brain: some regions are able to drive the brain into 
many different states (known as ‘average’ controllability), whereas 
others facilitate the engagement of ‘hard to reach’ states (‘modal’  
controllability)40 (Fig. 5).

The regional signatures of these two control classes were esti-
mated using structural diffusion data from the HCP41, and then 
related to the receptor maps from the Allen Brain Atlas. We 
observed strong positive correlations between the facilitatory group 
and ‘average’ controllability, and between the inhibitory group and 
‘modal’ controllability (Fig. 5 and Supplementary Table 2)40. Further 
analysis showed that the spatial loadings for PC1 were selectively 
correlated to each region’s strength (weighted degree; r =  0.34;  
P <  0.001) and showed predominant overlap with the structural 
rich-club35 of the brain (41.7% of nodes from PC1 were also within 
the rich-club; P <  0.01). In contrast, PC3 was negatively correlated 
with regional strength (r =  − 0.12; P <  0.05), which is suggestive of 
a core-periphery architecture. Our results are therefore consistent 
with the notion that control over network dynamics is a relatively  
distributed capacity42 that may be mediated by highly conserved 
neuromodulatory systems that guide the flow of the brain within a 
low-dimensional manifold.

Discussion
The results of our multimodal analysis revealed that the neural 
activity required for the execution of cognitive tasks corresponds 
to flow within a low-dimensional state space43. Across multiple, 
diverse cognitive tasks, the dynamics of large-scale brain activity 
engage an integrative core of brain regions that maximizes infor-
mation-processing complexity and facilitates cognitive perfor-
mance; only to then dissipate as the tasks conclude, flowing towards 
a more segregated architecture. Our findings further suggest that 
the brain’s dynamic trajectory may be shaped by a diverse set of 
highly conserved modulatory neurotransmitter systems that transi-
tion between distinct phases of the attractor landscape. Thus, any 
alteration in the activity of this diverse set of neurotransmitters (for 
example, as a result of prediction error signals, pharmacological 
manipulation, or neurodegenerative disease states) could plausibly 
enhance (or impair) neural signaling by raising the intrinsic poten-
tial of the regions that control global brain state dynamics (that is, 
the integrative core40). In this way, the results of our analysis provide 
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Fig. 5 | The neurochemical signature of integrated cognitive function. 
The mean density of tPC1−2 for two classes of neurotransmitter receptor 
maps: a group known to facilitate cognition (D1, α 2A, 5HT2A, and M1; 
right) and a group known to inhibit cognition (D2, α 1A, 5HT1A; left). The 
spatiotemporal patterns in these two classes were associated with 
differential network topologies: the facilitatory group was associated with 
an integrated brain, whereas the inhibitory group was associated with a 
relatively segregated brain; force-directed plots reflect the mean time-
resolved functional connectivity matrix when loading was positive for 
either the inhibitory (blue) or facilitatory (red) group (thresholded and 
binarized at 10% density for visualization purposes), and different classes 
of controllability: the facilitatory states were associated with high average 
controllability, whereas the inhibitory states were associated with high 
modal controllability.
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a potential biological explanation for the control of brain state 
dynamics that relates to individual differences in fluid intelligence. 
Our results also provide a framework for studying cognitive neuro-
science through the lens of dynamical systems, linking the flow of 
cognition to the dynamic reconfiguration of functional networks in 
the human brain.

Across multiple cognitive tasks with markedly different behav-
ioral requirements, the dynamics of human brain activity were 
found to occupy a low-dimensional state space embedding that may 
form the functional backbone of cognition in the human brain. The 
dynamics of these brain states, and their close links with ongoing 
behavior, were reminiscent of the patterns observed in studies of 
neural dynamics in both C. elegans8,9 and D. melanogaster10. Given 
that the behaviors studied in these animal systems demonstrate far 
more constrained repertoires (for example, basic movements8 and 
sleep9 in C. elegans), it is perhaps surprising that comparable low-
dimensional embeddings in humans are able to capture substantial 
amounts of variance (particularly given the breadth of behavioral 
tasks investigated in the HCP data set12). However, some consid-
erations do argue for similarities across species. For instance, the 
interactions that comprise the low-dimensional functional orga-
nization of the brain are likely to be mediated via high-degree, 
white-matter structural connections, either through the cortex35 or 
subcortical structures44, that provide crucial constraints over ongo-
ing energy dynamics45. These structural properties are markedly 
consistent across species46. Indeed, the complexity of human cogni-
tion may actually be constrained by much simpler underlying flows 
than we have described here43. Together, these results suggest that 
low-dimensional analyses of brain organization may provide crucial 
clues into the inner workings of the brain, and that the subtle idio-
syncratic functional dynamic signatures expressed by each species’ 
connectome may hold the key to deciphering differences in behav-
ioral repertoires across phylogeny.

Fluctuations in the low-dimensional core network architecture 
are associated with maximal information processing complexity 
across relatively long time scales, suggesting that the temporal sig-
nature of the integrative core is information rich and accumulates 
information over long time scales31,32. This slow, integrative core—
consistent with previous multi-task analyses3—contrasts with the 
architecture during epochs in which there was no task, in which 
the brain occupied a segregated topology and was associated with a 
shorter time scale of information processing. We also found a low-
dimensional component corresponding to task onset and offset 
(tPC5). Notably, these results were robust to permutation testing 
and resampling, suggesting that results were relatively impervious 
to individual differences (Supplementary Fig. 7). However, the 
specific form of the flow that we describe probably reflects idio-
syncrasies of imaging modality—namely, the low temporal resolu-
tion of the BOLD response and specifics of the task fMRI battery, 
such as the predominant use of visual stimuli and reliance on 
motor responses. In addition, the assumption of linearity inherent 
in the PCA approach could also potentially be improved through 
the use of nonlinear dimensionality approaches, so long as they 
also allow for the orthogonalized coordinate system that enables 
tracking of the state space over time. Nonetheless, we propose that 
a flow between the integrated and segregated phases will persist 
beyond the specific tasks used here, and probably constrains cog-
nitive capacities across a variety of psychological contexts. Future 
experiments could usefully examine the low-dimensional archi-
tecture of the brain across a broader range of psychological capaci-
ties, including ecologically valid contexts47 such as naturalistic 
stimulation paradigms.

It has been known for some time that ascending neuromodu-
latory systems provide important constraints on cognitive func-
tion33,48, but the systems-level mechanisms responsible for these 
capacities have remained relatively obscure. Here, we provide a 

description of the association between these distinct neuromodu-
latory systems and cognitive function. Specifically, a diverse set of 
modulatory neurotransmitter receptors occupy privileged spatial 
locations in the cortex that provide opportunities for mediating 
the flow of cognitive brain states over time23. Neuromodulatory 
receptors stimulate G-protein-coupled receptors, which alter 
trans-membrane ion gradients, and thus make neurons more 
(or less) likely to fire in response to glutamatergic inputs38. This 
process has been interpreted as altering the signal-to-noise ratio 
within neural circuits37—that is, neuromodulatory receptors have 
an information-gating role in the brain. Notably, computational 
work has also linked neuromodulatory activity to the alteration of 
the current attractor state19, which by influencing the low-dimen-
sional flow could facilitate cognitive function. Our results provide 
empirical evidence for these concepts, and support the notion that 
neuromodulation may affect network-level effects in the brain39,49. 
That is, neuromodulatory systems can alter the amount of inte-
gration and segregation in the brain by mediating communication 
among neural regions47. These nonlinear, competitive, and coop-
erative dynamic interactions between neuromodulatory systems 
may at least partially imbue the nervous system with its notable 
flexibility37, enabling the hard-wired ‘backbone’ of the brain to 
dynamically facilitate the neural coalitions required to navigate an 
evolving cognitive landscape.

Our observations yield novel predictions that can guide future 
work. For example, similar low-dimensional analyses of brain func-
tion in other species, notably other primates, might clarify whether 
or not shifts in this organizational framework underpin some of the 
distinctive cognitive abilities of humans. Strong phylogenetic con-
servatism in neuromodulatory systems suggests that evolution has 
modified pre-existing structures to shape human cognitive function, 
and the neural architecture that we have described offers a plausible 
substrate for such changes. Within our own species, variation in the 
low-dimensional core of the brain may also underlie some of the 
psychological manifestations of neuropsychiatric and neurodegen-
erative disorders. If so, detailed mapping of individual differences 
in the factors that shape the integrative core may suggest novel 
therapeutic interventions. Notably, given the multi-scale temporal 
organization inherent to the brain, the results of our study should 
be compared to similar low-dimensional derivations of functional 
brain architecture obtained by neuroimaging techniques with dis-
tinct spatiotemporal ‘apertures’, such as those based on electrophysi-
ological signals50. Future work could use the form of the attractor to 
enable model-based hemodynamic deconvolution, hence uncover-
ing the form of the generative processes. More generally, we hope 
that this work will provide a platform for future insights into the 
modular and integrative processes that form the infrastructure for 
cognition in the human brain.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41593-018-0312-0.

Received: 29 August 2018; Accepted: 26 November 2018;  
Published online: 21 January 2019

References
 1. Breakspear, M. Dynamic models of large-scale brain activity. Nat. Neurosci. 

20, 340–352 (2017).
 2. Tononi, G. & Edelman, G. M. Consciousness and complexity. Science 282, 

1846–1851 (1998).
 3. Krienen, F. M., Yeo, B. T. T. & Buckner, R. L. Reconfigurable task-dependent 

functional coupling modes cluster around a core functional architecture.  
Phil. Trans. R. Soc. Lond. B 369, 20130526 (2014).

NATURE NEUROSCIENCE | VOL 22 | FEBRUARY 2019 | 289–296 | www.nature.com/natureneuroscience 295



ARTICLES NATURE NEUROSCIENCE

 4. Cole, M. W., Bassett, D. S., Power, J. D., Braver, T. S. & Petersen, S. E. 
Intrinsic and task-evoked network architectures of the human brain. Neuron 
83, 238–251 (2014).

 5. Ghosh, A., Rho, Y., McIntosh, A. R., Kötter, R. & Jirsa, V. K. Noise during 
rest enables the exploration of the brain’s dynamic repertoire. PLoS Comput. 
Biol. 4, e1000196 (2008).

 6. Tononi, G., Sporns, O. & Edelman, G. M. Measures of degeneracy and 
redundancy in biological networks. Proc. Natl Acad. Sci. USA 96,  
3257–3262 (1999).

 7. Cunningham, J. P. & Yu, B. M. Dimensionality reduction for large-scale 
neural recordings. Nat. Neurosci. 17, 1500–1509 (2014).

 8. Kato, S. et al. Global brain dynamics embed the motor command sequence of 
Caenorhabditis elegans. Cell 163, 656–669 (2015).

 9. Nichols, A. L. A., Eichler, T., Latham, R. & Zimmer, M. A global brain state 
underlies C. elegans sleep behavior. Science 356, eaam6851 (2017).

 10. Lemon, W. C. et al. Whole-central nervous system functional imaging in 
larval Drosophila. Nat. Commun. 6, 7924 (2015).

 11. Stitt, I. et al. Dynamic reconfiguration of cortical functional connectivity 
across brain states. Sci. Rep. 7, 8797 (2017).

 12. Barch, D. M. et al. Function in the human connectome: task-fMRI and 
individual differences in behavior. Neuroimage 80, 169–189 (2013).

 13. Gordon, E. M. et al. Generation and evaluation of a cortical area parcellation 
from resting-state correlations. Cereb. Cortex 26, 288–303 (2016).

 14. Hasson, U., Nir, Y., Levy, I., Fuhrmann, G. & Malach, R. Intersubject 
synchronization of cortical activity during natural vision. Science 303, 
1634–1640 (2004).

 15. Kennel, M. B. & Abarbanel, H. D. I. False neighbors and false strands: a 
reliable minimum embedding dimension algorithm. Phys. Rev. E 66,  
026209 (2002).

 16. Dosenbach, N. U. F. et al. A core system for the implementation of task sets. 
Neuron 50, 799–812 (2006).

 17. Broomhead, D. S. & King, G. P. Extracting qualitative dynamics from 
experimental data. Physica D 20, 217–236 (1986).

 18. Friston, K. J., Frith, C. D., Liddle, P. F. & Frackowiak, R. S. Functional 
connectivity: the principal-component analysis of large (PET) data sets.  
J. Cereb. Blood Flow Metab. 13, 5–14 (1993).

 19. Woodman, M. M. & Jirsa, V. K. Emergent dynamics from spiking neuron 
networks through symmetry breaking of connectivity. PLoS ONE 8,  
e64339 (2013).

 20. Ott, E. & Antonsen, T. M. Low dimensional behavior of large systems of 
globally coupled oscillators. Chaos 18, 037113 (2008).

 21. Al-Aidroos, N., Said, C. P. & Turk-Browne, N. B. Top-down attention 
switches coupling between low-level and high-level areas of human visual 
cortex. Proc. Natl Acad. Sci. USA 109, 14675–14680 (2012).

 22. Cocchi, L., Gollo, L. L., Zalesky, A. & Breakspear, M. Criticality in the brain: 
a synthesis of neurobiology, models and cognition. Prog. Neurobiol. 158, 
132–152 (2017).

 23. Pillai, A. S. & Jirsa, V. K. Symmetry breaking in space-time hierarchies shapes 
brain dynamics and behavior. Neuron 94, 1010–1026 (2017).

 24. Gray, J. R., Chabris, C. F. & Braver, T. S. Neural mechanisms of general fluid 
intelligence. Nat. Neurosci. 6, 316–322 (2003).

 25. Poldrack, R. A. et al. Discovering relations between mind, brain, and mental 
disorders using topic mapping. PLoS Comput. Biol. 8, e1002707 (2012).

 26. Shine, J. M. & Poldrack, R. A. Principles of dynamic network reconfiguration 
across diverse brain states. Neuroimage 180, 396–405 (2018).

 27. Shine, J. M. et al. The dynamics of functional brain networks: integrated 
network states during cognitive task performance. Neuron 92, 544–554 (2016).

 28. Le Van Quyen, M. Disentangling the dynamic core: a research program for a 
neurodynamics at the large-scale. Biol. Res. 36, 67–88 (2003).

 29. DeSalvo, M. N., Douw, L., Takaya, S., Liu, H. & Stufflebeam, S. M. 
Task-dependent reorganization of functional connectivity networks during 
visual semantic decision making. Brain Behav. 4, 877–885 (2014).

 30. Boly, M. et al. Stimulus set meaningfulness and neurophysiological 
differentiation: a functional magnetic resonance imaging study. PLoS ONE 10, 
e0125337 (2015).

 31. Gollo, L. L., Zalesky, A., Hutchison, R. M., van den Heuvel, M. & Breakspear, 
M. Dwelling quietly in the rich club: brain network determinants of slow 
cortical fluctuations. Phil. Trans. R. Soc. Lond. B 370, 20140165 (2015).

 32. Honey, C. J. et al. Slow cortical dynamics and the accumulation of 
information over long timescales. Neuron 76, 423–434 (2012).

 33. Robbins, T. W. & Arnsten, A. F. T. The neuropsychopharmacology of 
fronto-executive function: monoaminergic modulation. Annu. Rev. Neurosci. 
32, 267–287 (2009).

 34. Aston-Jones, G. & Cohen, J. D. An integrative theory of locus coeruleus-
norepinephrine function: adaptive gain and optimal performance. Annu. Rev. 
Neurosci. 28, 403–450 (2005).

 35. van den Heuvel, M. P. & Sporns, O. An anatomical substrate for integration 
among functional networks in human cortex. J. Neurosci. 33,  
14489–14500 (2013).

 36. Puig, M. V., Gulledge, A. T., Lambe, E. K. & Gonzalez-Burgos, G. Editorial: 
neuromodulation of executive circuits. Front. Neural Circuits 9,  
58 (2015).

 37. Brezina, V. Beyond the wiring diagram: signalling through complex 
neuromodulator networks. Phil. Trans. R. Soc. Lond. B 365,  
2363–2374 (2010).

 38. Avery, M. C. & Krichmar, J. L. Neuromodulatory systems and their 
interactions: a review of models, theories, and experiments. Front. Neural 
Circuits 11, 108 (2017).

 39. Shine, J. M., Aburn, M. J., Breakspear, M. & Poldrack, R. A. The modulation 
of neural gain facilitates a transition between functional segregation and 
integration in the brain. eLife 7, e31130 (2018).

 40. Gu, S. et al. Controllability of structural brain networks. Nat. Commun. 6, 
8414 (2015).

 41. Yeh, F.-C. et al. Population-averaged atlas of the macroscale human structural 
connectome and its network topology. Neuroimage 178, 57–68 (2018).

 42. Tu, C. et al. Warnings and caveats in brain controllability. Neuroimage 176, 
83–91 (2018).

 43. Huys, R., Perdikis, D. & Jirsa, V. K. Functional architectures and structured 
flows on manifolds: a dynamical framework for motor behavior. Psychol. Rev. 
121, 302–336 (2014).

 44. Bell, P. T. & Shine, J. M. Subcortical contributions to large-scale network 
communication. Neurosci. Biobehav. Rev. 71, 313–322 (2016).

 45. Fulcher, B. D. & Fornito, A. A transcriptional signature of hub connectivity in 
the mouse connectome. Proc. Natl Acad. Sci. USA 113, 1435–1440 (2016).

 46. van den Heuvel, M. P., Bullmore, E. T. & Sporns, O. Comparative 
connectomics. Trends Cogn. Sci. 20, 345–361 (2016).

 47. Poldrack, R. A. & Yarkoni, T. From brain maps to cognitive ontologies: 
informatics and the search for mental structure. Annu. Rev. Psychol. 67, 
587–612 (2016).

 48. Moran, R. J. et al. Free energy, precision and learning: the role of cholinergic 
neuromodulation. J. Neurosci. 33, 8227–8236 (2013).

 49. Cohen, J. D., Braver, T. S. & Brown, J. W. Computational perspectives on 
dopamine function in prefrontal cortex. Curr. Opin. Neurobiol. 12,  
223–229 (2002).

 50. Vidaurre, D., Smith, S. M. & Woolrich, M. W. Brain network dynamics are 
hierarchically organized in time. Proc. Natl Acad. Sci. USA 114,  
12827–12832 (2017).

Acknowledgements
We would like to thank T. Verstynen for the diffusion data, and D. Bassett for the 
controllability code. The funding for the study was provided by an NHMRC CJ Martin 
Fellowship (GNT1072403) and a University of Sydney SOAR Fellowship (J.M.S.).

Author contributions
J.M.S. and O.S. conceived of the idea. J.M.S., M.B., O.S., and R.A.P. designed the analysis 
plan. J.M.S. ran the analyses and wrote the first draft of the manuscript. M.B., P.T.B., 
K.A.E.M., O.S., R.S., and R.A.P. provided critical methodological and conceptual input. 
All authors provided critical feedback on the manuscript, including editing of the final 
manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s41593-018-0312-0.

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to J.M.S.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019

NATURE NEUROSCIENCE | VOL 22 | FEBRUARY 2019 | 289–296 | www.nature.com/natureneuroscience296



ARTICLESNATURE NEUROSCIENCE

Methods
Data acquisition. Data used in the preparation of this work were obtained from 
the HCP database. For both the discovery and replication analyses, minimally 
preprocessed fMRI data were acquired from 100 unrelated participants (mean 
age 29.5 years, 55% female51). For each participant, BOLD data from the left-right 
encoding session from seven unique tasks were acquired using multiband gradient-
echo echo planar imaging, amounting to 23 min 17 s of data (1,940 individual 
time points) per subject. The following parameters were used for data acquisition: 
TR =  720 ms, echo time =  33.1 ms, multiband factor =  8, flip angle =  52o, field of 
view =  208 ×  180 mm2 (matrix =  104 ×  90), 2 ×  2 ×  2 isotropic voxels with 72 slices, 
alternated left-right/right-left phase encoding. No statistical methods were used 
to predetermine sample sizes, but our sample sizes are similar to those reported in 
previous publications27. Ethics approval and randomization of task presentation 
were performed by the authors of the original studies (see ref. 51 for further 
details). All data analyses were conducted in accordance with the ethical guidelines 
mandated by the University of Sydney. The authors have complied with all local 
institutional and national ethical regulations. See the Life Sciences Reporting 
Summary for further details.

Data preprocessing. Bias field and motion correction (12 linear degrees of 
freedom using FSL’s FLIRT) were applied to the HCP resting state data as part 
of the minimal preprocessing pipeline51. Temporal artifacts were identified in 
each data set by calculating framewise displacement from the derivatives of 
the six rigid-body realignment parameters estimated during standard volume 
realignment52, as well as the root mean square change in BOLD signal from volume 
to volume (DVARS). Abnormal frames were not excluded from the data. However, 
we observed no significant relationship between any of the tPC time series and 
framewise displacement (estimated from the temporal head motion parameters) 
at the individual subject level (P > 0.5). Following artifact detection, nuisance 
covariates associated with the six linear head movement parameters (and their 
temporal derivatives), frame-wise displacement, DVARS, and anatomical masks 
from the cerebrospinal fluid and deep cerebral WM were regressed from the data 
using the CompCor strategy53. To ensure equivalence across tasks, the data were 
also normalized within each temporal window, which effectively controlled for 
the global signal, while also equilibrating the data across independent subjects. 
Finally, a temporal low-pass filter (f < 0.125 Hz) was applied to the data. Subjects 
were chosen according to the quality of the data (that is, low head motion and 
high temporal signal-to-noise ratio), and, as such, no subjects were removed after 
the initial inclusion. Data collection and analysis were not performed blind to the 
conditions of the experiments.

Brain parcellation. Following preprocessing, the mean time series was extracted 
from 375 predefined regions of interest. To ensure whole-brain coverage, we 
extracted 333 cortical parcels (161 and 162 regions from the left and right 
hemispheres, respectively) using the Gordon atlas13, 14 subcortical regions from 
the Harvard–Oxford subcortical atlas (bilateral thalamus, caudate, putamen, 
ventral striatum, globus pallidus, amygdala, and hippocampus), and 28 cerebellar 
regions from the SUIT atlas54.

Cognitive tasks. Seven unique tasks were utilized from the HCP consortium: 
emotion, gambling, language/mathematics, motor, N-back, relational, and social12. 
For each task, a block regressor was created by partitioning the time series into time 
points in which subjects were actively performing the task, and those in which they 
were ‘resting’ (note: not all tasks contained designated ‘rest’ blocks). Of note, the  
‘rest’ blocks in the mathematical task involved an auditory, language-based task. 
The time points associated with each block were convolved with a canonical 
hemodynamic response function (using the spm_hrf.m from SPM12) and then 
concatenated over time to create a single task block regressor. These served as 
reference time series for comparison to the tPC time series (see gray lines in Fig. 1b).  
All results were successfully replicated using a finite impulse response model.

PCA. Preprocessed data from each task were concatenated to form a multi-task 
time series per subject and a spatial PCA was performed on the resultant data55. 
Task block structure was not regressed from the data before PCA estimation. 
The time series of each PC was then estimated by calculating the weighted mean 
of the group-level BOLD time series associated with each respective PC8. To aid 
inference, group-level tPC time series were calculated by taking the mean for each 
PC time series across all subjects. To estimate the appropriate dimensionality of the 
data15, we calculated the percentage of false nearest neighbors following the PCA 
decomposition (a measure of effective embedding across dimensions15), and found 
that there were < 10% present in the top 5 PCs, and < 1% present in the top 10 PCs 
(Fig. 1b). This and all subsequent code are freely available at http://github.com/
macshine/state_space/.

To ensure that the low-dimensional embedding space was not adversely 
affected by the task block structure, we replicated our analysis using the residuals 
of an ordinary least squares regression in which we modeled regional BOLD data 
according to the task structure present across all seven tasks (with independent 
blocks modeled as unique regressors). Each of the major results in our study was 
replicated following this procedure, suggesting that, although the low-dimensional 

signature of the brain was related to the temporal structure imposed by the tasks, 
this factor was not solely responsible for the psychophysiological relationships 
observed in our study.

To ensure that the PCA results were robust to individual differences, we ran 2 
subsequent analyses: (1) the same analysis was conducted in a replication cohort 
(N =  100); and (2) a resampling analysis was performed by estimating a PCA on 
100 randomly chosen subjects. Each of these analyses was associated with robustly 
similar results to the group mean analysis (r >  0.85).

To determine the importance of running the PCA across all concatenated 
tasks, we performed three subsequent analyses: (1) We re-ran separate PCAs for 
each task individually and found that, although one of the first five components 
for each task was strongly related to task block structure (r >  0.50), the 
spatial weightings were dissimilar to the pattern observed when all tasks were 
concatenated (mean r =  0.18 ±  0.2) and more similar to the main effect of each 
task (mean r =  0.72 ±  0.2). A difference score was then calculated between the two 
groups, which allowed us to estimate statistical significance using the Dunn and 
Clark statistic (ZI*). (2) We used a resampling approach in which we randomly 
selected between two and six tasks and re-ran the PCA, and then performed both 
a spatial and a temporal correlation between the topography and time series for 
PC1, respectively. In doing so, we found that at least four tasks were required to 
recreate the pattern found across the original seven tasks (Supplementary Fig. 2). 
(3) We ran a standard general linear model (GLM) using the concatenated task 
block structure, demonstrating a selective positive correlation between the spatial 
map of PC1 and the resultant beta map (r =  0.94; P <  0.001). A similar significant 
relationship was selectively observed between PC5 and the beta map estimated 
from a GLM comparing task onsets to BOLD activity (r =  0.34; P <  0.001).

Relationship between principal components and task block structure. To 
estimate the relationship between the tPC time series and the task block structure, 
we ran a series of linear regression analyses comparing the temporal fluctuations 
in tPC time courses and the concatenated, convolved task block time series, both 
for the entire set of seven tasks and also for each task independently. In a similar 
fashion to the spatial PCs, tPCs were strongly replicable across the discovery and 
replication cohorts (mean r across tPC1–5: 0.84 ±  0.1), confirming the specificity 
of low-dimensional temporal brain activity during cognitive task performance. 
Finally, none of the tPCs were significantly correlated with typical noise confounds, 
such as head motion (framewise displacement; mean r across tPC1–5: 0.00 ±  0.1) 
or signals from the white matter and cerebrospinal fluid (mean r across tPC1–5: 
0.00 ±  0.1) at the individual subject level, nor the global signal over time (r =  − 0.04).  
In addition, there were no interactions between task blocks and head motion, and 
results were found to be replicable when performing moderate levels of ‘scrubbing’ 
(that is, censoring data with framewise displacement > 0.25 and DVARS > 2.5%)2.

Low-dimensional manifold. To describe flow along the low-dimensional 
embedding space, we used an approach previously utilized in C. elegans calcium 
imaging8, in which the global brain cycle is partitioned into four ‘phases’ using the 
time course of the tPC1 as a reference signal: a trough in tPC1 defined the low phase 
(tPC1(t) <  33rd percentile; blue in Fig. 2a), an increase in tPC1 defined the rise 
phase (33rd percentile < tPC1(t) <  67th percentile and dtPC1’ >  0; red), a plateau 
in the tPC1 signal defined the high phase (tPC1(t) >  67th percentile; yellow), and a 
decrease in tPC1 defined the fall phase (33rd percentile <  tPC1(t) <  67th percentile 
and dtPC1’ <  0; green). After classifying low-dimensional activity into these four 
phases, we then performed a linear interpolation on each trajectory (that is, to 
warp each segment into a set of identically sized vectors). We were then able to 
estimate the trajectory of a low-dimensional ‘manifold’19 by calculating the mean 
activity across the interpolated trajectories, which in turn could be projected into 
the embedding space to describe the manifold (Fig. 2c).

Using the four tPC1 phases (low, rise, high, and fall), we estimated the ‘dwell 
time’ for each of the phases explored by the first PC by calculating the number of 
consecutive TRs in which each phase was present in the data. We then separately fit 
exponential, Weibull (stretched exponential), power law, and gamma distributions 
to these data (these reflect the likelihood of a multistable, critical, power law, or 
metastable process, respectively; see ref. 22). The log likelihood of each fit was then 
used to compute the Bayesian information criterion (BIC) for each distribution—
low values here represent stronger evidence for a particular fit. We found that 
exponential fits were better able to explain the data (that is, lower BIC =  − 34,637) 
than were the Weibull (BIC =  − 33,814), gamma (BIC =  − 33,620), or power-law 
(BIC =  − 7,012) distributions.

Topic mapping. To determine the potential cognitive relevance of the low-
dimensional embedding space, we created regional estimates of 28 spatial maps 
that represented a curated selection of the 50 ‘topics’ identified during a large-scale 
analysis of existing neuroimaging literature25 (topics that were not explicitly related 
to psychological constructs were excluded from the 50-topic solution before the 
analysis). These 28 maps were further collapsed into four tight-knit ‘topic families’ 
(see Supplementary Table 1) by calculating the spatial similarity of each map and 
then clustering the matrix using a weighted version of the Louvain algorithm 
(that is, the algorithm described in the section headed Time-resolved network 
topology). Topic families were assigned labels according to the top ten terms 
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associated with the topic-word loading matrix that related study terms to brain 
mappings. We then created a weighted mean between each of these topic family 
spatial maps and the concatenated BOLD time series data. Using a ‘winner take 
all’ approach, we categorized each time point according to the topic family with 
the strongest spatial correspondence to the regional BOLD pattern present at that 
time, which allowed us to then project the topic families into the low-dimensional 
embedding space (Fig. 3c). Finally, we used a nonlinear, block resampling 
permutation test (see Statistical analysis below for more details), which preserves 
some of the autocorrelation structure, to demonstrate that the four topic families 
were selectively associated with unique aspects of the low-dimensional manifold 
(5,000 iterations; P <  0.01).

Time-resolved functional connectivity. To estimate functional connectivity 
between the 375 regions of interest, we used the multiplication of temporal 
derivatives (M) technique56. M is computed by calculating the point-wise product 
of temporal derivative of pair-wise time series (Equation 1). The resultant score is 
then averaged over a temporal window, w, to reduce the contamination of high-
frequency noise in the time-resolved connectivity data. A window length of  
20 TRs was used in this study, though results were consistent across a range of  
w values (10–50 TRs). To ensure relatively smooth transitions between each task, 
connectivity analyses were performed on each individual task separately, and were 
subsequently concatenated. In addition, all analyses involving connectivity (or the 
resultant topological estimates) incorporated the junction between each task as a 
nuisance regressor.
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where for each time point, t, the M for the pair-wise interaction between region i 
and j is defined according to equation 1, where t′’is the first temporal derivative 
(t + 1 −  t) of the ith or jth time series at time t, σ is the standard deviation of the 
temporal derivative time series for region i or j, and w is the window length of the 
simple moving average. This equation can then be calculated over the course of a 
time series to obtain an estimate of time-resolved connectivity between pairs of 
regions. Results were replicated using a jack-knife connectivity approach57 that 
does not require the fitting of a window.

Time-resolved network topology. The Louvain modularity algorithm from the 
Brain Connectivity Toolbox58 was used in combination with the M to estimate 
time-resolved community structure. The Louvain algorithm iteratively maximizes 
the modularity statistic, Q, for different community assignments until the 
maximum possible score of Q has been obtained (see Equation 2). The modularity 
of a given network is therefore a quantification of the extent to which the network 
may be subdivided into communities with stronger within-module than between-
module connections.

∑ ∑
ν

δ
ν ν

δ= − −
+

−+
+ +

+ −
− −Q w e w e1 ( ) 1 ( ) (2)T

ij
ij ij M M

ij
ij ij M Mi j i j

where v is the total weight of the network (sum of all negative and positive 
connections), wij is the weighted and signed connection between regions i and j, eij 
is the strength of a connection divided by the total weight of the network, and δM Mi j

 
is set to 1 when regions are in the same community and 0 otherwise. ‘+ ’ and ‘–’ 
super-scripts denote all positive and negative connections, respectively.

For each temporal window, we assessed the community assignment for each 
region 500 times and a consensus partition was identified using a fine-tuning 
algorithm from the Brain Connectivity Toolbox (http://www.brain-connectivity-
toolbox.net/). This afforded an estimate of both the time-resolved modularity (QT) 
and cluster assignment (CiT) within each temporal window for each participant 
in the study. We calculated all graph theoretical measures on un-thresholded, 
weighted, and signed connectivity matrices58. The stability of the γ parameter was 
estimated by iteratively calculating the modularity across a range of γ values  
(0.5–2.0) on the time-averaged connectivity matrix for each subject—across 
iterations and subjects, a γ value of 1.0 was found to be the least variable, and hence 
was used for the resultant topological analyses. Consistent with previous studies27, 
the average number of communities identified in each window was 2.74 ±  0.5.

Based on time-resolved community assignments, we estimated within-module 
connectivity by calculating the time-resolved module-degree Z-score (WT; within 
module strength) for each region in our analysis (Equation 3)59, where κiT is the 
strength of the connections of region i to other regions in its module, si, at time  
T, κsiT

 is the average of κ over all of the regions in si at time T, and σκsiT
 is the 

standard deviation of κ in si at time T.

κ κ
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−
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The participation coefficient, BT, quantifies the extent to which a region connects 
across all modules (that is, between-module strength) and has previously been used 
to successfully characterize hubs within brain networks (for example, see ref. 60). 

The BT for each region was calculated within each temporal window using  
Equation 4, where κisT is the strength of the positive connections of region i 
to regions in module s at time T, and κiT is the sum of strengths of all positive 
connections of region i at time T. Negative connections were discarded before 
calculation. The BT of a region is therefore close to 1 if its connections are uniformly 
distributed among all the modules and 0 if all of its links are within its own module.
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To determine the topological signature of each tPC, we used a general linear 
model to fit the top five tPC time series to time-varying network topology (both 
mean BT and Q). Although synchronous sensory inputs do not necessarily force 
regions to couple together over time5, we first regressed out all unique patterns 
associated with the task blocks from each of the seven tasks (with each unique 
block modeled as a separate regressor). In addition, the calculation of the temporal 
derivative also down-weights the task effects on overall activity that are presumed 
to drive spurious functional connectivity56. We then fit a general linear model 
using the tPC time series as predictors, along with separate regressors that modeled 
the junction between corresponding tasks. Separate models were fit for unique 
regional BT values. We subsequently ran a block resampling permutation test to 
determine whether there were significantly elevated values of BT within predefined 
networks of the brain (5,000 iterations; P <  0.01). In addition, we also analyzed 
multiple separate window lengths (10–100 in steps of 10), and observed a similar 
relationship between mean BT and tPC1, albeit with a peak in similarity at a  
window length of 20 TRs).

Complex cognitive brain state dynamics. To explore the functional signature 
of the integrative core, we calculated the mean intra-regional connectivity for all 
regions connected to the integrative core (mean regional-to-core connectivity 
(transformed using Fisher’s r-to-Z) > 1.0) and compared this value to the mean 
connectivity for all regions outside of the core (that is, mean regional-to-core 
connectivity ≤ 1.0). Before calculating the difference score, we first applied a 
Fisher’s r-to-Z transform to each data point to increase Gaussianity. These values 
were compared using an independent samples t-test.

To estimate time series differentiation, we calculated the Lempel–Ziv 
complexity30 of each region’s concatenated time series, binarized to values  
greater than or less than 0. We then ran a Pearson’s correlation comparing the 
Lempel–Ziv complexity scores with the BT associated with tPC1 (that is, the 
regional beta weights from a general linear model in which the tPC time series 
were regressed against time-resolved BT values). The autocorrelation function  
was estimated for each region by calculating the time-delayed Pearson’s 
correlation between each region’s pre-preprocessed BOLD time series, using a 
lag of 1–30 TRs (0.7–21.6 s). For each lag, a Pearson’s correlation was conducted 
between the integrative core and the autocorrelation function of each region.  
For each analysis, a block resampling permutation test was conducted to test 
statistical significance.

Neurotransmitter receptor mapping. To investigate the potential pharmacological 
correlates of progressive evolution along the manifold, we interrogated the 
neurotransmitter receptor signature of each region of the brain. To do so, we used 
the Allen Brain Atlas micro-array atlas (http://human.brain-map.org/) to identify 
the regional signature of genetic expression of metabotropic neurotransmitter 
receptors that were a priori related to cognitive function. We identified 
neurotransmitter receptor maps for receptors from four major neurotransmitter 
families, which were grouped into two families: a facilitatory group, comprising 
dopaminergic (D1), noradrenergic (α 2A), cholinergic (M1), and serotonergic (5HT2A) 
receptors; and an inhibitory group, comprising D2, α 1A, and 5HT1A receptors. We 
first identified the spatial topography of each receptor subtype. We then created 
a weighted mean between each of these neurotransmitter receptor maps and the 
concatenated BOLD time series data. These time series were then related to: (1) the 
tPC time series; (2) the topic map time series; and (3) the time-resolved topological 
time series. We applied a series of block resampling permutation tests to test for 
temporal alignments between neurotransmitter receptor maps and the manifold and 
topic family maps, separately (5,000 iterations; P <  0.01).

Structural controllability. A structural connectome was created from diffusion 
magnetic resonance imaging data from 842 subjects (372 males and 470 females, 
age 22–36) from the HCP cohort using a deterministic fiber tracking algorithm 
that leverages information in spin distribution functions (for details, see ref. 41). 
The spatial resolution was 1.25 mm isotropic; TR was 5,500 ms; TE was 89.50 ms; 
the b-values were 1,000, 2,000, and 3,000 s mm−2; and the total number of diffusion 
sampling directions was 90, 90, and 90 for each of the shells, in addition to 6 b0 
images. A weighted connectivity matrix was quantified using the same cortical 
and subcortical parcellation used in the functional analysis. The strength (that is, 
weighted degree) of each region was collected for further analysis, and a simple 
randomized null model (5,000 permutations) was run to determine whether the 
core regions demonstrated greater structural interconnectivity than the rest  
of the brain.
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To estimate regional controllability, we calculated the average and 
modal controllability of the weighted structural connectome (see ref. 40 
for details). Briefly, average controllability is defined as the trace( κ

−W 1), 
where = ∑κ τ

τ
κ κ

τ
=

∞W A B B A0
T  is the controllability Gramian, A is the weighted 

connectivity matrix, and B is the input matrix that defines the control points in 
the network; and modal controllability is computed as the eigenvector matrix 
V =  [vij] of the network adjacency matrix A (if the entry vij is small, then the jth 
mode is poorly controllable from node i. While it is known that these measures 
relate to degree/strength, there is also evidence that they remain after controlling 
for degree, and hence may relate to other topological features of the structural 
connectome42. The regional patterns created from these analyses were then 
used to create a weighted mean between each of these control maps and the 
concatenated BOLD time series data. These time series were then related to the 
other outcome measures in our study, and we used a block resampling null model 
to determine statistical significance. We also correlated the spatial loading of the 
first five PCs with the strength (that is, weighted degree) of each region within 
the structural connectome.

Statistical analysis. For a number of the main analyses, we ran separate block 
resampling permutation tests to determine statistical significance. This approach 
scrambles the alignment of the data to the task structure but (relatively) preserves 
autocorrelation by randomly ‘cutting’ the data in two sections, and then re-
analyzing the data. For each comparison, we constructed unique null data sets 
(5,000 iterations) and then determined statistical significance by calculating the 
proportion of the 5,000 iterations that our original test statistic was greater than 
(or lesser than) the 97.5th percentile (or 2.5th percentile) of the null distribution. 
Importantly, this approach is non-parametric, and thus the distribution of the data 
was not of concern.

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Code availability
All code used to analyze the data in this study is available from http://github.com/
macshine/state_space/.

Data availability
Data were provided by the Human Connectome Project (HCP); the Washington 
University, University of Minnesota, and Oxford University Consortium (Principal 
Investigators David Van Essen and Kamil Ugurbil; grant no. 1U54MH091657) 
funded by 16 NIH institutes and centers that support the NIH Blueprint for 
Neuroscience Research; and the McDonnell Center for Systems Neuroscience 
at Washington University. This project also made use of Connectome DB and 
Connectome Workbench, developed under the auspices of the HCP (HCP 1200 
Subject Release, http://www.humanconnectome.org/). Neurotransmitter receptor 
data from the Allen Human Brain Atlas (2010 Allen Institute for Brain Science; 
available from: human.brain-map.org) were obtained from neurosynth.org.
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Data collection The data were collected by the Human Connectome Project and the Allen Brain Project, both of which are openly available datasets.

Data analysis The code used to create the analysis are freely available at http://github.com/macshine/state_space/. In addition, code used for the 
graph theoretical analysis is freely available from the Brain Connectivity Toolbox (https://sites.google.com/site/bctnet/).
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Research, and the McDonnell Center for Systems Neuroscience at Washington University. This project also made use of Connectome DB and Connectome 
Workbench, developed under the auspices of the HCP (http://www.humanconnectome.org/). Neurotransmitter receptor data from the Allen Human Brain Atlas (© 
2010 Allen Institute for Brain Science. Available from: human.brain-map.org) were obtained from neurosynth.org.
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Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description The study uses quantitative methods.

Research sample 200 unrelated individuals from the Human Connectome project were used for the main study sample. A further 642 subjects were used 
to create the structural connectome. Data from the Allen Brain Atlas was collected from 6 subjects post-mortem.

Sampling strategy Two separate cohorts were identified by members of the HCP consortium. Effect sizes were not known prior to our analysis, however it 
was determined that two samples of 100 subjects would retain adequate power to detect small-to-moderate effects 
(neuropowertools.org).

Data collection Data were collected by members of the Human Connectome Project and Allen Brain Atlas.

Timing Please see Barch et al., 2014 (NeuroImage) for details.

Data exclusions No data were excluded from the analysis

Non-participation Please see Barch et al., 2014 (NeuroImage) for details.

Randomization Please see Barch et al., 2014 (NeuroImage) for details.

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics Please see Barch et al., 2014 (NeuroImage) for details.

Recruitment Please see Barch et al., 2014 (NeuroImage) for details.

Magnetic resonance imaging
Experimental design

Design type task block/event design
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Design specifications Blocks varied across tasks (details are present in the methods section)

Behavioral performance measures Responses were recorded using button presses. Please see Barch et al., 2014 (NeuroImage) for details.

Acquisition

Imaging type(s) fMRI + diffusion MRI

Field strength 3T

Sequence & imaging parameters The following parameters were used for data acquisition: TR = 720 ms, echo time = 33.1 ms, multiband factor = 8, flip 
angle = 52 degrees, field of view = 208x180 mm (matrix = 104 x 90), 2x2x2 isotropic voxels with 72 slices, alternated LR/
RL phase encoding.

Area of acquisition Whole brain scan

Diffusion MRI Used Not used

Parameters The spatial resolution was 1.25 mm isotropic, TR was 5500 ms, TE was 89.50 ms, the b-values were 1000, 2000, and 3000 s/mm2, and 
the total number of diffusion sampling directions was 90, 90, and 90 for each of the shells, in addition to 6 b0 images.

Preprocessing

Preprocessing software Custom matlab scripts, which are available at github.com/macshine/

Normalization Bias field correction and motion correction (12 linear DOF using FSL’s FLIRT) were applied to the HCP resting state data 
as part of the minimal preprocessing pipeline54. To ensure equivalence across tasks, the data were also normalized 
within each temporal window, which effectively controlled for the global signal, while also equilibrating the data across 
independent subjects. Finally, a temporal low-pass filter (f < 0.125 Hz) was applied to the data.

Normalization template MNI152. Please see original study for details.

Noise and artifact removal Temporal artifacts were identified in each dataset by calculating framewise displacement from the derivatives of the six 
rigid-body realignment parameters estimated during standard volume realignment55, as well as the root mean square 
change in BOLD signal from volume to volume (DVARS). Abnormal frames were not excluded from the data. However, 
we observed no significant relationship between any of the tPC time series and framewise displacement (estimated 
from the temporal head motion parameters) at the individual subject level (p > 0.5). Following artifact detection, 
nuisance covariates associated with the 12 linear head movement parameters (and their temporal derivatives), frame-
wise displacement, DVARS, and anatomical masks from the CSF and deep cerebral WM were regressed from the data 
using the CompCor strategy56. 

Volume censoring Scrubbing was not performed on this data.

Statistical modeling & inference

Model type and settings To estimate the relationship between the tPC time series and the task block structure, we ran a series of linear 
regression analyses comparing the temporal fluctuations in tPC time courses and the concatenated, convolved task 
block time series, both for the entire set of seven tasks and also for each task independently.

Effect(s) tested To estimate the relationship between the tPC time series and the task block structure, we ran a series of linear 
regression analyses comparing the temporal fluctuations in tPC time courses and the concatenated, convolved task 
block time series, both for the entire set of seven tasks and also for each task independently.

Specify type of analysis: Whole brain ROI-based Both

Anatomical location(s) Gordon et al. parcellation (cortex) + subcortical parcellation (Harvard/Oxford atlas) + cerebellar 
parcellation (SUIT atlas)

Statistic type for inference
(See Eklund et al. 2016)

Non-parametric permutation testing (block-resampling)

Correction Non-parametric permutation testing

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity To estimate functional connectivity between the 375 ROIs, we used the Multiplication of Temporal 
Derivatives (M) technique59. M is computed by calculating the point-wise product of temporal derivative 
of pairwise time series (Equation 1). The resultant score is then averaged over a temporal window, w, in 
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order to reduce the contamination of high-frequency noise in the time-resolved connectivity data. A 
window length of 20 TRs was used in this study, though results were consistent across a range of w values 
(10-50 TRs). To ensure relatively smooth transitions between each task, connectivity analyses were 
performed on each individual task separately, and were subsequently concatenated. In addition, all 
analyses involving connectivity (or the resultant topological estimates) incorporated the junction between 
each task as a nuisance regressor. Results were replicated using a jack-knife connectivity approach that 
does not require the fitting of a window.

Graph analysis The Louvain modularity algorithm from the Brain Connectivity Toolbox (BCT60) was used in combination 
with the MTD to estimate time-resolved community structure. The Louvain algorithm iteratively maximizes 
the modularity statistic, Q, for different community assignments until the maximum possible score of Q 
has been obtained (see Equation 2). The modularity estimate for a given network is therefore a 
quantification of the extent to which the network may be subdivided into communities with stronger 
within-module than between-module connections.




